تعداد نشریات | 50 |
تعداد شمارهها | 2,232 |
تعداد مقالات | 20,476 |
تعداد مشاهده مقاله | 25,267,753 |
تعداد دریافت فایل اصل مقاله | 22,921,805 |
A Recurrent Neural Network for Solving Strictly Convex Quadratic Programming Problems | ||
International Journal of Industrial Mathematics | ||
مقاله 3، دوره 10، شماره 4، بهمن 2018، صفحه 339-347 اصل مقاله (435.36 K) | ||
نوع مقاله: Research Paper | ||
نویسندگان | ||
A. Ghomashi ؛ M. Abbasi | ||
Department of Mathematics, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran. | ||
چکیده | ||
In this paper we present an improved neural network to solve strictly convex quadratic programming(QP) problem. The proposed model is derived based on a piecewise equation correspond to optimality condition of convex (QP) problem and has a lower structure complexity respect to the other existing neural network model for solving such problems. In theoretical aspect, stability and global convergence of the proposed neural network is proved. | ||
کلیدواژهها | ||
Dynamical system؛ Strictly convex quadratic programming؛ Stability؛ Global convergence؛ Recurrent neural network | ||
آمار تعداد مشاهده مقاله: 372 تعداد دریافت فایل اصل مقاله: 479 |