[1] S. Abbasbandy, E. Babolian, M. Alavi, Numerical method for solving linear Fredholm fuzzy integral equations of the second kind, Chaos Solitons Fract. 31 (2007) 138-146.
[2] T. Allahviranloo, Sh. S. Behzadi, The use of airfoil and Chebyshev polynomials methods for solving fuzzy Fredholm integro-differential equations with Cauchy kernel, Soft Computing 12 (2014) 1885-1897.
[3] T. Allahviranloo, P. Salehi, M. Nejatiyan Existence and uniqueness of the solution of nonlinear fuzzy Volterra integral equations, Iranian Journal of Fuzzy Systems 2 (2015) 75-86.
[4] G. A. Anastassiou, Fuzzy mathematics: Approximation Theory, Springer, Heidelberg. (2010).
[5] G. A. Anastassiou, S. G. Gal, On a fuzzy trigonometric approximation theorem of Weirstrasstype, J. Fuzzy Math. 9 (2001) 701-708.
[6] K. Balachandran, K. Kanagarajan, Existence of solutions of general nonlinear fuzzy VolterraFredholm integral equations, J. Appl. Math. Stochastic Anal. 3 (2005) 333-343.
[7] K. Balachandran, P. Prakash, On fuzzy Volterra integral equations with deviating arguments, J. Appl. Math. Stochastic Anal. 2 (2004) 169-176.
[8] K. Balachandran, P. Prakash, Existence of solutions of nonlinear fuzzy Volterra-Fredholm integral equations, J. Pure Appl. Math. 33 (2002) 329-343.
[9] A. M. Bica, Error estimation in the approximation of the solutions of nonlinear fuzzy Fredholm integral equations, Info. Sci. 178 (2008) 1279-1292.
[10] H. Brunner, On the numerical solution of nonlinear Volterra-Fredholm integral equations by collocation method, SIAM J. Numer. Anal. 27 (1990) 987-1000.
[11] S. S. L. Chang, L. Zadeh, On fuzzy mapping and control, IEEE Trans. Syst. Man. Cybernet. 2 (1972) 30-34.
[12] D. Dubois, H. Prade, Operations on fuzzy numbers, J. Syst. Sci. 9 (1978) 613-626.
[13] D. Dubois, H. Prade, Fuzzy Sets and Systems: Theory and Applications, Academic Press, New York. (1980).
[14] C. F. Elmer, E. S. Van Vleck, A variant of Newton’s method for solution of travelling wave solutions of bistable differential-difference equation, J. Dyn. Differ. Equ. 14 (2002) 493-517.
[15] R. Ezzati, A method for solving dual fuzzy general linear systems, Appl. Comput. Math. 7 (2008) 235-241.
[16] S. Falcan, A. Plaza, On k-Fibonacci sequences
[17] M. A. Fariborzi Araghi, S. Noeiaghdam, Fibonacci-regularization method for solving Cauchy integral equations of the first kind, Ain Shams Eng J. 8 (2017) 363-369.
[18] R. Goetschel, W. Voxman, Elementary fuzzy calculus, Fuzzy Sets Syst. 18 (1986) 31-43.
[19] M. K. Kadalbajoo, K. K. Sharma, Numerical analysis of singularly-perturbed delay differential equations with layer behaviour, Appl. Math. Comput. 157 (2004) 11-28.
[20] O. Kaleva, Fuzzy differential equations, Fuzzy Sets Syst. 24 (1987) 301-317.
[21] J. P. Kauthen, Continuous time collocation method for Volterra-Fredholm integral equations, Numer. Math. 56 (1989) 409-424.
[22] G. J. Klir, U. S. Clair, B. Yuan, Fuzzy set theory: foundations and applications, Prentice-Hall Inc. (1997).
[23] N. Kurt, M. Sezer, polynomials solution of highorder linear Fredholm integro-differential equations with constant coefficients, J. Franklin Ins. 345 (2008) 839-850.
[24] A. Kurt, Fibonacci polynomials solution linear differential integral and integro-differential equations with constant coefficients, Graduate School of Natural and Applied Sciences. (2012).
[25] M. Ma, M. Friedman, A. Kandel, A new fuzzy arithmetic, Fuzzy Sets Syst. 108 (1999) 83-90.
[26] M. Ma, M. Friedman, A. Kandel, Duality in fuzzy linear systems, Fuzzy Sets Syst. 109 (2000) 55-58.
[27] E. H. Mamdani, Applications of fuzzy algorithms for simple dynamic plants, Proc. IEE. 121 (1974) 1585-1588.
[28] F. Mirzaee, S. F. Hoseini, A Fibonacci collocation method for solving a class of FredholmVolterra integral equations in two-dimensional spaces, Beni-Suef Univ J Basic Appl Sci. 3 (2014) 157-163.
[29] F. Mirzaee, S. F. Hoseini, Solving systems of linear Fredholm integro-differential equations with Fibonacci polynomials, Ain Shams Eng J. 5 (2014) 271-283.
[30] M. Mizumoto, K. Tanaka, The four operations of arithmetic on fuzzy numbers, Syst. Comput. Controls. 7 (1976) 73-81.
[31] M. Mizumoto, K. Tanaka, Some properties of fuzzy numbers, Advances in Fuzzy Set Theory and Applications, North Holland. 14 (1979) 153-164.
[32] S. Nahmias, Fuzzy variables, Fuzzy Sets Syst. 1 (1978) 97-111.
[33] S. Nanda, On integration of fuzzy mappings, Fuzzy Sets Syst. 32 (1989) 95-101.
[34] M. L. Puri, D. Ralescu, Fuzzy random variables, J. Math. Anal. Appl. 114 (1986) 40-94.
[35] M. L. Puri, D. Ralescu, Differentials of fuzzy functions, J. Math. Anal. Appl. 91 (1983) 552-558.
[36] S. Seikkala, On the fuzzy initial value problem, Fuzzy Sets Syst. 24 (1987) 319-330.
[37] T. Sheverini, M. Paripour, N. Karamikabir, A new efficient method using Bernoulli polynomials to solve systems of linear fuzzy Volterra integral equations, JIFS. 34 (2018) 4113-4125.
[38] D. S. Watkins, Fundamentals of matrix computations, John Wiley and Sons. 64 (2004) 123-141.
[39] H. C. Wu, The fuzzy Riemann integral and its numerical integration, Fuzzy Sets Syst, 110 (2000) 1-25.
[40] F. M. Yu, H. Y. Chung, S. Y. Chen, Fuzzy sliding mode controller design for uncertain time-delayed systems with nonlinear input, Fuzzy Sets Syst. 140 (2003) 359-374.
[42] L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning, Inform. Sci. 8 (1975) 199-249.