- [1] ادوین التون، مارتین گروبر، استفن براون و ویلیام گوتزمان، مترجم علی سوری، (1391) نظریه جدید سبد دارایی و تحلیل سرمایه گذاری، انتشارات بانک تجارت.
- [2] ﻣﺮﺗﻀﯽ رﺣﻤﺎﻧﯽ ﺑﺎ ﻫﻤﻜﺎری ﻓﻬﯿﻤﻪ ﺻﺎﺋﺒﯽ و ﻧﺮﺟﺲ ﻋﻠﯽ ﺑﺨﺸﯽ، (1393) ﻛﺎرﺑﺮد ﻧﻈﺮﯾﻪ آﺷوب و ﻓﺮاﻛﺘﺎل در ﭘﯿﺶﺑﯿﻨﯽﺳﺮیﻫﺎی زﻣﺎنی، ﭘﮋوﻫﺸﻜﺪه ﺗﻮﺳﻌﻪ ﺗﻜﻨﻮﻟﻮژی.
- [3] دولو، م، ورزیده، ع، (1399). پیش بینی شاخص کل بورس اوراق بهادار تهران با استفاده از مدل حرکت براونی هندسی نشریـه علمـی دانش مالی تحلیل اوراق بهادار سال سیزدهم، شماره چهل و ششم صفحه 193 الی 208.
- [4] Fama, E.F., (1965), The behaviour of stock-market prices, Journal of Business. Vol. 38, pp.34-105.
- [5] Fama, E.F., (1965), Random walks in stock market prices, Financial Analysts Journal. Vol.21 pp.55-59
- [6] Fama, E.F., (1970), Efficient capital markets: a review of theory and empirical work, Journal ofFinance. Vol.25, 383–417.
- [7] Shahzad, S.J.H., M. Zakaria, S. Ali, N. Raza, (2015), Market efficiency and asymmetric relationship between south asian stock markets: An empirical analysis, Pakistan J. Commer. Soc. Sci. 9 (3), pp. 875–889.
- [8] Rizvi, S.A.R. S. Arshad, (2014), Investigating the efficiency of East Asian stock markets through booms and busts, Pac. Sci. Rev. 16 (4), pp. 275–279.
- [9] Lima, E.J.A., B.M., Tabak, (2004) Tests of the random walk hypothesis for equity markets: evidence from China, Hong Kong and Singapore, Appl. Econ. Lett. Vol. 11, pp. 255–258.
- [10] Wang, J., D. Zhang, J. Zhang, (2015) Mean reversion in stock prices of seven Asian stock markets: Unit root test and stationary test with Fourier functions, Int. Rev. Econ. Finance, vol. 37 pp. 157–164.
- [11] Rizvi, S.A.R., G. Dewandaru, O.I. Bacha, M. Masih, (2014), An analysis of stock market efficiency: Developed vs Islamic stock markets using MF-DFA, Physica A, vol. 407, pp. 86–99.
- [12] Ali.S, J.H., Shahzad, N. Raza, Kh.H. Yahyaee, (2018) stock market efficiency: A comparative analysis of Islamic and conventional stock markets, Physica A, vol. 503, pp. 139–153.
- [13] Shahzad, S.J.H., S.M., Nor, W. Mensi, R.R. Kumar, (2017), Examining the efficiency and interdependence of US credit and stock markets through MF-DFA and MF-DXA approaches, Physica A, vol 471., pp. 351–363.
- [14] Tiwari, A.K., C.T., Allbulesun, S.M., Yoon, (2017), A multifractal detrended fluctuation analysis of financial market. efficiency: Comparison using Dow Jones sector ETF indices, Physica A
- [15] Arshad, S. et al., (2016), Investigating stock market efficiency: A look at OIC membercountries, Research in International Business and Finance, vol. 36, pp. 402–413.
- [16] Uddin, G.S., J.A., Hernandez, S.J.H., Shazad, S.M. Yoon, (2018), Time-varying evidence of efficiency, decoupling, and diversification of conventional and Islamic stocks. International Review of Financial Analysis, vol. 56, pp. 167–180.
- [17] Khazali, O.A., E. Bouri, D. Roubaud, T. Zoubi, (2017) The impact of religious practice on stock returns and volatility, International Review of Financial Analysis, vol. 52, pp. 172–189.
- [18] Rounaghi, M.M., F. Nassir Zadeh, (2016) Investigation of market efficiency and Financial Stability between S&P 500 and London Stock Exchange: Monthly and yearly Forecasting of Time Series Stock Returns using ARMA model, Published by Elsevier B.V.
- [19] Gulich, D., L. Zunino, (2014), A criterion for the determination of optimal scaling ranges in DFA and MF-DFA, Physica A, vol. 397, pp. 17–30.
- [20] Gozbasi, O., I. Kucukkaplan, S. Nazlioglu, (2014), Re-examining the Turkish stock market efficiency: Evidence from nonlinear unit root tests, Econ. Modell., vol. 38, pp. 381-384.
- [21] Neaime, S., (2015), Are emerging MENA stock markets mean reverting? A Monte Carlo simulation, Finance Res. Lett. vol. 13, pp. 74–80.
- [22] Rizvi, S.A.R., S. Arshad, (2015), Investigating the efficiency of East Asian stock markets through booms and busts, Pac. Sci. Rev. 16, vol. 4, pp. 275–279.
- [23] Stošić, D., et al., (2015), Multifractal properties of price change and volume change of
- stock market indices, Physica A, Published by Elsevier B.V.
- [24] Yang, L., Y. Zhu, Y. Wang, (2016), Multifractal characterization of energy stocks in China: A multifractal detrended fluctuation analysis, Physica A, vol. 451, pp. 357–365.
- [25] Zhao, H., S. He, (2016), Analysis of speech signals’ characteristics based on MF-DFA with moving overlapping windows, Physica A, vol. 442, pp. 343–349.
- [26] Zhuang, X., Y. Wei, F. Ma, (2015) Multifractality, efficiency analaysis of Chinese stock market and its cross- correction with WTI crude oil price, Physica A, vol. 430, pp. 101- 113.
- [27] Bai, M.Y., H.B., Zhu, (2010), power law and multiscaling properties of the Chinese stock market, physica A, vol. 389, pp. 1883-1890.
- [28] Rizvi, S.A., S. Arshad, (2017) Analysis of the efficiency- integration nexus of Japanese stock market, physica A, vol. 470, pp. 296-308.
- [29] Mensi.W, A.K., Tiwar, S. Min Yoon, (2016) Global financial crisis and weak-form efficiency of Islamic sectoral stock markets: An MF-DFA analysis, physa. Vol. 12, pp. 34.
- [30] Chen. C, Y. Wang, (2017), Understanding the multifractality in profolio excess returns, physica A, vol. 466, pp. 346-355.
- [31] Nian, D., Z. Fu, (2019), Extended self-similarity based multi-fractal deternded fluctuation analysis: A novel multi-fractal quantifying method commun Nonlinear Sci Numer Simulate, vol.67, pp. 568-576.
- [32] Kantelharddt, Jan.W., (2008), Fractal and Multifractal Time Series, arxiv:0804.0747v1.
- [33] Ian McLeod, A., (2016) Mark, M., Meerschaert, and Farzad sabzikar, TEMPERED FRACTIONNAL TIME SERIES.
- [34] Mielniczuk, J., P. Wojdyllo, (2007), Estimation of Hurst exponent revisited, Computational Statistics & Data Analysis 51, pp. 4510-4525.
- [35] Ruzhen Yan, Ding Yue, Xudong Chen, Xu Wu,(2020),
- Non-linear characterization and trend identification of liquidity in China’s new OTC stock market based on multifractal detrended fluctuation analysis, Chaos, Solitons and Fractals 139 , 110063
- [36] Yin, T.; Wang, Y(2021). Market Efficiency and Nonlinear Analysis of Soybean Futures. Sustainability,13, 518. https://doi.org/10.3390/
|