تعداد نشریات | 50 |
تعداد شمارهها | 2,232 |
تعداد مقالات | 20,476 |
تعداد مشاهده مقاله | 25,282,225 |
تعداد دریافت فایل اصل مقاله | 22,934,531 |
An Algorithm for Aggregating the Opinions of Experts in the Group Analysis Hierarchical Process using a Voting Model | ||
Journal of New Researches in Mathematics | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 10 مهر 1401 | ||
نوع مقاله: research paper | ||
شناسه دیجیتال (DOI): 10.30495/jnrm.2022.67500.2272 | ||
نویسندگان | ||
Zaher Sepehrian1؛ Sahar Khoshfetrat 2؛ Said Ebadi Sharafabad3 | ||
1گروه ریاضی، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران | ||
2گروه ریاضی، واحد تبریز، دانشگاه آزاد اسلامی، تبریز ، ایران | ||
3گروه ریاضی، واحد اردبیل، دانشگاه آزاد اسلامی، اردبیل، ایران | ||
چکیده | ||
How to obtain a priority vector from a pairwise comparison matrix has been an important issue in the analysis hierarchical process. Group decision making is an important part of multi-criteria decision making in the sis analysis hierarchical process. In group decision-making in which all the experts work as a unit, analysis hierarchical process usually follows one of the traditional approaches of aggregating individual judgments and aggregating individual priorities. In this paper, an algorithm for aggregating the opinions of experts using the voting model is presented. In the voting model, using the votes of individuals regarding the position of the criteria, they rank the criteria without using a pairwise comparison matrix. The voting model is proposed in cases where the number of experts is very large. In cases where the number of experts is limited, the local weights can be determined using the SBM model based on the pairwise comparison matrix of each expert, using which the rank of each criterion is determined .The rank obtained from the SBM model can be considered as the vote of experts, which prevents the mental bias of experts in voting. Therefore, it is possible to aggregate the opinions of experts using the voting model. The following is a numerical example to illustrate the potential of this algorithm. The results show that the ratings obtained from this algorithm in the mode of benevolent cross-evaluation correspond to the ranking using the eigenvector method. | ||
کلیدواژهها | ||
Data envelopment analysis؛ Analysis Hierarchical Process؛ Multi-Criteria Decision Making؛ Voting Model؛ Cross-Evaluation | ||
آمار تعداد مشاهده مقاله: 147 |