تعداد نشریات | 50 |
تعداد شمارهها | 2,044 |
تعداد مقالات | 19,130 |
تعداد مشاهده مقاله | 22,382,742 |
تعداد دریافت فایل اصل مقاله | 20,898,806 |
An alternative proof for a characterization of inner product spaces | ||
Journal of New Researches in Mathematics | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 09 آذر 1401 | ||
نوع مقاله: research paper | ||
شناسه دیجیتال (DOI): 10.30495/jnrm.2022.52389.1885 | ||
نویسنده | ||
Mahdi Dehghani ![]() ![]() | ||
گروه ریاضی محض، دانشکده علوم ریاضی، ذانشگاه کاشان، کاشان، اصفهان، ایران | ||
چکیده | ||
The most geometric properties of inner product spaces like strict convexity and smoothness my fail to hold in a general normed linear spaces. Also, some main properties of the orthogonality in inner product spaces do not always carry over to generalized orthogonalities. Taking these into account different types of orthogonality relations provide a good frame for studying the geometric properties of normed linear spaces. In this paper, we give a characterization of inner product spaces using the notion of Hermite–Hadamard type of Carlsson’s orthogonality in normed linear spaces. First, we provide some more results about the existence property of this orthogonality. Next, we prove that Hermite-Hadamard type of Carlsson’s orthogonality is additive in a normed linear space X if and only if X is an inner product space. Our approach to prove this fact is using the relationship between Birkhoff-James orthogonality and the Gateaux differentiability of the norm of normed linear spaces. | ||
کلیدواژهها | ||
Inner product space, Orthogonality, Birkhoff-James orthogonality, Hermite-Hadamard type of Calrsson&rsquo؛ s orthogonality | ||
آمار تعداد مشاهده مقاله: 18 |