تعداد نشریات | 50 |
تعداد شمارهها | 2,044 |
تعداد مقالات | 19,130 |
تعداد مشاهده مقاله | 22,382,921 |
تعداد دریافت فایل اصل مقاله | 20,899,025 |
Investigating the Relationship between Ordinary and Fuzzy Inner Product Spaces | ||
Journal of New Researches in Mathematics | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 20 دی 1401 | ||
نوع مقاله: research paper | ||
شناسه دیجیتال (DOI): 10.30495/jnrm.2023.51656.1868 | ||
نویسندگان | ||
سعید عباسبندی ![]() ![]() | ||
1Imam Khomeini International University | ||
2Islamic Azad University, Hamedan branch, Hamedan, Iran | ||
3Islamic Azad University, Hamedan Branch, Hamedan, Iran | ||
چکیده | ||
In this paper, we study the relationship between ordinary inner product spaces and fuzzy inner product spaces. We introduce fuzzy inner product as 〈.,.〉(.). Also, we write norm by parameter. Here are some types of arbitrary spaces. We show that these spaces are fuzzy inner product spaces. Furthermore, we investigate fuzzy convergence, fuzzy Cauchy, fuzzy complete and fuzzy Hilbert in the space W^m [0,1] by fuzzy inner space which is in the form 〈.,.〉(.). We study relationship between ordinary Hilbert space and fuzzy Hilbert space. Then we give a new definition of the fuzzy reproducing kernel property, where fuzzy inner product is by parameter λ. The properties of the fuzzy reproducing kernel are completely discussed in this paper. We study relationship between ordinary Hilbert space and fuzzy Hilbert space. Then we give a new definition of the fuzzy reproducing kernel property, where fuzzy inner product is by parameter λ. The properties of the fuzzy reproducing kernel are completely discussed in this paper. | ||
کلیدواژهها | ||
Fuzzy reproducing kernel؛ Fuzzy convergence؛ Fuzzy Hilbert space | ||
آمار تعداد مشاهده مقاله: 19 |