تعداد نشریات | 50 |
تعداد شمارهها | 2,208 |
تعداد مقالات | 20,242 |
تعداد مشاهده مقاله | 24,180,748 |
تعداد دریافت فایل اصل مقاله | 22,089,208 |
Transition curves approximation for Mathieu differential equation with two fractional derivatives | ||
Journal of New Researches in Mathematics | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 27 دی 1401 | ||
نوع مقاله: research paper | ||
شناسه دیجیتال (DOI): 10.30495/jnrm.2023.62706.2136 | ||
نویسندگان | ||
Hojjat Ghorbani؛ Yaghoub Mahmoudi ![]() ![]() ![]() ![]() | ||
گروه ریاضی، دانشکده علوم پایه، واحد تبریز، دانشگاه آزاد اسلامی، تبریز ، ایران | ||
چکیده | ||
Mathieu differential equation in a linear second kind differential equation, which appears in different areas in applied mathematics and engineering. Most of the flat oscillators are modeled as Mathieu differential equation. One of the most important studies in this area is the study of transition curves and stability behavior of the solution. In this paper, the Mathieu differential equation with two fractional derivatives is studied. The transition curves, which separate the stability and the instability region in the parameters plane of the problem, are approximated using Harmonic Balance method. The Graph of parameter changes is plotted to achieve instability. Finding the optimal order of fractional derivatives to reach the maximum amplitude to initiate instability is discussed. The results show that if we convert the derivatives of the Mathieu differential equation to the integer order derivative, the results obtained from this method are consistent with the results obtained in other texts. | ||
کلیدواژهها | ||
Mathieu differential equation؛ Caputo fractional derivative؛ Transition curve؛ Harmonic balance method | ||
آمار تعداد مشاهده مقاله: 56 |