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ABSTRACT 
This study used the Copula-ARIMA-GARCH approach to calculate the VAR of a portfolio of four investment 

companies and daily data (from March/April 2009 to February/March 2017) to calculate risk more accurately and 

develop methods of the performance evaluation of value at risk (VaR1) models by a combination of a copula 

function and ARIMA/GARCH models. In this study, a novel method was proposed to evaluate the performance 

of VaR models using the fuzzy multicriteria decision-making models. For this purpose, ranks attained by the VaR 

estimation models were employed considering the unconditional coverage test procedure, Dowd’s loss function 

procedure, and the rank given the prediction accuracy. The results indicated that risk-taking and risk-indifferent 

investors assume that the VaR calculated from the Copula-ARIMA-GARCH model is the most accurate model, 

while risk-averse investors take the generalized extreme value (GEV2) model as the most accurate model 

considering the high importance of the loss function.  
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1. Introduction 
Financial crises that have arisen in recent years 

indicated the inefficiency of traditional measurement 

and risk management techniques in volatile 

international markets in the 21st century. Given large 

fluctuations in the gold price, exchange rate, etc., over 

the last few years, Iranian companies must reconsider 

their risk management policies. For this purpose, they 

can use modern risk management tools such as copula 

functions as well as generally accepted criteria such as 

value at risk (VaR). Various tests have been presented 

for measuring the accuracy of VaR models since the 

late 1990s. Despite their difference in details, the 

majority of these tests have been founded upon the 

concept of comparing the actual loss with the reported 

VaR. 

In this study, a novel model, i.e., the Copula-

ARIMA-GARCH model, is proposed to measure 

market risk. Here, the ARIMA and GARCH models 

are respectively utilized to simultaneously explain and 

evaluate the mean and conditional variance. However, 

similar research is simply dedicated to explaining the 

conditional variance. Finally, the copula model is 

employed to simulate and calculate asset correlations 

in the portfolio more precisely. In the majority of the 

research published in prominent national and 

international journals, the sample portfolio includes 

two assets. In this research, however, our portfolio 

contains four assets. Furthermore, in most cases, only 

parameters are estimated but not predicted. Herein, we 

have used observation horizon prediction using 

estimated parameters, rendering this research more 

applied. 

After calculating VaR using different traditional 

techniques, the Copula-GARCH model, the extreme 

value theory, they are compared in terms of estimation 

power. This study introduces a novel method for 

evaluating the performance of VaR models using 

fuzzy multicriteria decision-making models, which has 

not been dealt with in similar studies so far. 

 

2. Literature Review 
Investors take into consideration the project risk and 

return at the same time as one of the primary factors 

contributing to investment decisions when they are 

about to invest in different projects. It should be 

acknowledged that risk is an integral part of the return, 

which must be taken into account when deciding the 

return of different investment projects. 

Financial institutions mainly face the following 

risks: credit risk, liquidity risk, interest rate risk, 

market risk, off-balance-sheet risk, currency risk, 

political risk, and default risk. Risk managers 

primarily seek to strike a balance between risk and 

return. 

Copula functions provide powerful tools to 

describe the structure of correlation between 

multidimensional random variables. For example, they 

are used to calculate the VaR of the portfolio in the 

field of risk management. Heteroscedasticity models 

are now widely used in time-series analysis, especially 

financial applications when subjected to analysis of 

variance (ANOVA) and estimation of variance 

components. Engle (1982) was the first to demonstrate 

that although most financial time series are 

unpredictable, significant clustering can be observed in 

their volatility. This phenomenon is called conditional 

heteroscedasticity because it is assumed that the series 

is generally stationary, but its expected conditional 

variance changes over time. 

 

3. Research Background 
Till Guldimann, head of research at J.P. Morgan’s 

Corporate & Investment Bank (CIB), is believed to be 

the inventor of the term “value at risk (VaR).” In 1995, 

the Basel Committee on Banking Supervision (BCBS) 

obliged banks to use this model to determine their 

capital adequacy ratio (CAR). 

In his research, Mills discovered for the first time 

that most economic variables lack normal distribution. 

High kurtosis and skewness in distribution indicate 

univariate non-normal distribution. Recent studies 

have also shown that multivariate distributions are 

non-normal, known as asymmetric dependence. An 

example of asymmetric dependence is when two assets 

have a higher correlation coefficient in a bear market 

than a bull market, illustrated in the works of Erb et al. 

(1994), Longin and Solnik (2001), and Ang and Chen 

(2002). This indicates the superiority of copula 

functions in modeling the correlation structure. Sklar 

(1959) was the first person who proposed to use 

copula functions to measure the nonlinear correlation 

between variables. Embrechts et al. (1999) were the 

first people who proposed to utilize copula in the 

financial area. Even though “copula” is a relatively 

new concept, advances in time-series modeling mainly 
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owe to higher-order conditional moments, such as 

Engle’s (1982) Autoregressive Conditional 

Heteroskedasticity (ARCH) and Bollersleve’s (1986) 

Generalized Autoregressive Conditional 

Heteroskedasticity (GARCH) models. Using these 

models, Patton (2001) introduced a conditional copula. 

In their article entitled “Evaluating the Family of 

GARCH Models in Predicting Stock Market 

Fluctuations (case study: Tehran Stock Exchange),” 

Saeed Rasekhi et al. (2014) wrote that “the research 

findings suggested that first, t-distribution and general 

mistake outperformed normal distribution as they took 

excess kurtosis of return series into consideration, 

based on root-mean-square of prediction error (RMES) 

and Thiel’s inequality coefficient (TIC). Second, 

PGARCH and GARCH models, assuming t-

distribution, yielded the best performance, and 

EGARCH and TGARCH models, assuming a normal 

distribution, yielded the worst performance. 

In a paper, Omari et al. (2018) calculated the VaR 

of the currency portfolio for four currency pairs  using 

the GARCH-EVT-COPULA method. They concluded 

that the Student-t copula is the best copula in modeling 

the structure of correlation between all pairs of 

exchange rates. Moreover, the GARCH-EVT-

COPULA model successfully implemented the VaR of 

the portfolio based on backtesting. 

In a paper, Sahamkhadem et al. (2018) conducted 

portfolio optimization using the GARCH-EVT-

COPULA forecasting models for ten stock indices. 

They concluded that the GARCH-EVT-COPULA 

forecasting models employ Gaussian and student-t 

copulas and have the best performance in risk 

mitigation. 

In their paper, Huang and Chyan So (2018) 

proposed to apply the COPULA-GARCH model to 

estimate the VaR of a portfolio with a credit default 

swap (CDS). They selected six constant and time-

varying copulas combined with GARCH skewed 

Student-t innovation (GARCH-skt) to form eight 

copula-GARCH models to capture the joint 

distribution of the two assets in the portfolio. They 

then computed corresponding 1-day VaRs. According 

to their findings, the time-varying symmetrized Joe-

Clayton (SJC) copula model combined with the 

GARCH-skt (tvSJC-copula–GARCH-skt) performed 

best, regardless of the market situation. 

In their paper, Wenhua Yu et al. (2017) examined 

the VaR and the expected shortfall in a given portfolio 

composed of four crude oil assets using various 

GARCH models, extreme value theory, and vine 

copulas. The results demonstrated that combining the 

GARCH-type-EVT models and vine copulas can yield 

accurate risk criteria from the crude oil portfolio. 

In a study entitled “examining the application of 

historical simulation methods in forecasting the 

expected shortfall using semi-parametric and non-

parametric historical simulation models and parametric 

GARCH, EGARCH, and AGARCH models in four 

different asset groups using different sliding 

windows,” Olsen (2015) evaluated the different risk 

prediction models. The results indicated that the semi-

parametric historical simulation models and parametric 

GARCH-family models have a higher prediction 

capability than non-parametric historical simulation 

models. 

In a paper, Tang et al. (2014) estimated the risk of 

the natural gas portfolio by mean of the GARCH-

EVT-Copula model. They concluded that, for an 

equally weighted portfolio of five natural gases, the 

VaR and ES values obtained from the student-t copula 

are larger than those obtained from the Gaussian 

copula. 

In addition, Ngoga Kirabo Bob (2013) used a 

combination of copula functions, extreme value 

theory, and GARCH to estimate the VaR of a portfolio 

composed of stock indices of Germany, Spain, Italy, 

and France. In their research, they demonstrated that 

the student-t copula had outperformed the other 

methods. Huang et al. (2009) calculated the VaR of a 

portfolio of the NASDAQ (National Association of 

Securities Dealers Automated Quotations system) and 

TAIEX (Technical Assistance and Information 

Exchange) indices using the copula-GARCH method. 

Palaro and Hotta (2006) calculated the VaR of a 

portfolio composed of the S&P 500 and NASDAQ 

indices using a mixed model with the conditional 

copula and multivariate GARCH to estimate the VaR 

of a portfolio composed of NASDAQ and S&P 500 

indices. In this study, the VaRs of different methods 

are compared, indicating that the VaR obtained by the 

SJC copula has had the best performance. 

In an article entitled “Forecasting the Value at Risk 

Using the GARCH-EVT Approach in Tehran Stock 

Exchange,” Ali Dehghani et al. (2014) demonstrated 

that the approach to calculating VaR using the 

GARCH-EVT approach is more cost-effective and 

realistic. Similar research has failed to simultaneously 



16 /   Developing the Methods of the Performance Evaluation of VaR Models Using Fuzzy TOPSIS and … 

Vol.8 / No.31 / Autumn 2023 

explain and estimate the mean and conditional 

variance by means of the ARIMA-GARCH model. 

They have also failed to investigate and compare the 

performance of the extreme value theory and the 

copula-GARCH model in calculating the VaR. On the 

other hand, this research offered a novel approach to 

evaluate the performance of VaR models using fuzzy 

multicriteria decision-making methods. 

 

4. Methodology 
This is an applied research study in purpose. Herein, 

by building a portfolio composed of the shares of four 

investment companies, with stock symbols A, B, C, 

and D, we seek to answer the following question, 

“Does the Copula-ARIMA-GARCH model perform 

better than other methods in comparing the portfolio 

risk or not?” For instance, this study used the data 

during an eight-year period (daily intervals from 

March/April 2009 to February/March 2017). After 

data reduction in Excel, a total of 1723 return-daily 

observations were eventually obtained for each share. 

 

4.1. Marginal distribution model 

The marginal distribution models considered in this 

study are based on ARIMA and GARCH models. 

Herein, to achieve i.i.d. distributions and estimate the 

variance, the [composite] mean and conditional 

variance model is explained and estimated 

simultaneously. To this aim, the Box-Jenkins 

methodology (ARIMA) is employed to model the 

mean of the return on assets and heteroscedasticity 

models (GARCH) to model the conditional variance. 

Their standardized error terms have a normal or 

Student’s t-distribution. 

 

Using GARCHn and GARCHt models to estimate 

the variance 

The normal GARCH model, an extension of Engle’s 

ARCH model, was introduced by Bollerslev. It is also 

known as the symmetric normal GARCH model. The 

symmetric normal GARCH model can be obtained 

utilizing unconditional variance as follows: 

E(at−1
2 ) = σt−1

2  

σt
2 = σt−1

2 = σ̅2 

σ̅2 =
𝛼2

1−(𝛼1+𝛼2)
  (1) 

 

where 𝛼1 represents the response of conditional 

variance to market shocks. When 𝛼1 is large, 

conditional volatility highly responds to market 

shocks. To obtain the GARCH model parameters, the 

value of the following equation can be minimized: 

 

−2 ln L(θ) =∑(ln(σt
2) + (

at
σt
)
2

)

T

t=1

 (2) 

 

where θ represents the parameters of the conditional 

variance equation for the symmetric normal GARCH 

model θ = (ω, 𝛼1, 𝛼2). 

 

Using the 𝑨𝑹𝑰𝑴𝑨(𝒑,𝒅, 𝒒) − 𝑮𝑨𝑹𝑪𝑯𝒏 model to 

simultaneously estimate the mean and conditional 

variance 

 

(3) 

 

In this study, the maximum likelihood [estimation] 

method is employed to estimate the ARIMA-GARCH 

model parameters. 

 

4.2. Copula functions 

Let’s assume that X is a continuous random variable 

with domain D. 

The [probability] density function X is the derivative 

of the distribution function F(f(x) = F′(x)). Since F is 

a monotonically increasing function, then f(x) ≥ 0. 

The quantile of the continuous random variable X with 

the probability α ∈ [0,1] is the value of xα from the 

random variable X, such that: 

 

P(X < xα) = α (4) 

 

Quantiles are used for simulation. In other words, to 

simulate a value for the random variable, a uniformly 

distributed random number is initially generated. Then, 

simulation is carried out using the inverse of the 

distribution function. To conduct simulation for 

rt = μt + β1rt−1 +⋯+ βprt−p + at + 𝛾1at−1

+⋯+ 𝛾𝑞 at−q       

at = σtεt 

σt
2 = ω + 𝛼1 at−1

2 + 𝛼2 σt−1
2  

at|Ωt−1~N(0, σt
2) or td 
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several random variables, copula functions capable of 

working with two variables must be used since our 

portfolio in this study consists of four assets (more 

than two assets). Thus, Gaussian copula functions are 

employed in this study, whose equation is as follows: 

 

CGaussian ( 𝑈1, 𝑈2;  Q )  =  ɸ𝑄( ɸ
−1(𝑢1), ɸ

−1(𝑢2) ) (5) 

 

To estimate VaR using copula functions, the return 

should be simulated by means of copula functions. 

Therefore, to estimate copula function parameters, 

marginal distribution parameters are initially 

estimated, followed by copula function parameters. 

However, the reverse is true in simulation using copula 

functions. That is, marginal distribution functions are 

simulated after correlations. 

 

4.3. Simulation using conditional copulas 

Let’s assume that the joint distribution of the random 

variable 𝑋1, … . , 𝑋𝑛  is obtained using 𝑛 marginal 

distribution functions 𝐹𝑖(𝑥𝑖) and copula 𝐶(𝑢1, … . , 𝑢𝑛) 

(𝑥𝑖 = 𝐹𝑖
−1(𝑢𝑖)). It is simulated using the following 

equation and joint distribution of variables: 

1) The random number sequence {𝑢1, … . , 𝑢𝑛} is 

simulated using independent uniform random 

variables. 

2) First, we set 𝑢1
∗ = 𝑢1. Then, using the inverse of 

the conditional copula 𝐶2 |1
−1

, 𝑢2 is converted to 

𝑢2
∗

 as follows: 

𝑈2
∗ = 𝐶2 1 1

−1(𝑢2|𝑢1
∗) (6) 

 

Now, using 𝑢1
∗

 and 𝑢2
∗

, 𝑢3
∗

 can be calculated as 

follows: 

𝑈3
∗ = 𝐶3 1 1 2

−1(𝑢3|𝑢1
∗, 𝑢2

∗) (7) 

 

By carrying out this operation for all 𝑢𝑖s, the set 

{𝑢1
∗, … . , 𝑢𝑛

∗} is obtained. 

3) Using the inverse of the marginal distribution 

functions 𝐹𝑖
−1 and the set {𝑢1

∗, … . , 𝑢𝑛
∗}, the 

simulated values for each marginal distribution is 

obtained as {𝐹1
−1(𝑢1

∗
), … . , 𝐹𝑛

−1(𝑢𝑛
∗)}. 

 

4.4. Value at Risk 

The VaR of a given portfolio at time 𝑡 ([𝑡, 𝛥𝑡]) at a 

(1 − 𝛼) confidence level where 𝛼 ∈ (1,0) can be 

defined as follows: 

𝑃( 𝑋𝑝,𝑡  ≤  𝑉𝐴𝑅𝑡(𝛼)| Ω𝑡−1) =  𝛼 (8) 

 

That is to say, we are 100(1 − 𝛼)% confident that the 

loss of our portfolio in the time interval between 𝑡 and 

𝛥𝑡 will not exceed the VaR. Herein, our portfolio is 

composed of the shares of four investment companies. 

In this portfolio, the assets are equally weighted; 

however, the results obtained do not change with 

changing asset weights. 

 

4.5. Estimating Value at Risk using the 

hybrid 𝐀𝐑𝐈𝐌𝐀(𝐩, 𝐝, 𝐪) − 𝐆𝐀𝐑𝐂𝐇𝒏  model 

with the copula function 

To estimate VaR using the copula-ARIMA-GARCH 

model, a model needs to be initially estimated for each 

marginal distribution. Mean-conditional variance 

models are applied to estimate the marginal 

distribution of investment companies introduced in this 

research. First, a model is estimated for each of the 

marginal distributions using the ARIMA-GARCH 

models. Afterward, the error terms of the models are 

standardized. If the standardized error term time-series 

of the marginal distributions is demonstrated as 

{𝜂𝑖  , 𝜂𝑗 , 𝜂𝑘 , 𝜂𝑙}, the marginal distribution parameters 

can be measured using the maximum likelihood 

[estimation] method by converting 𝑢𝑖 = 𝐹(𝜂𝑖), 𝑢𝑗 =

𝐹(𝜂𝑗), 𝑢𝑘 = 𝐹(𝜂𝑘), and 𝑢𝑙 = 𝐹(𝜂𝑙). After measuring 

the copula function parameters using the algorithm 

described in the preceding section, 1000 intervals are 

simulated for each of the marginal distributions. The 

quantile of the portfolio return can be calculated by 

converting the simulated returns of the marginal 

distributions to portfolio return. The result is the one-

day VaR of the portfolio. This method has been 

founded upon Jondeau and Rockinger’s (2006) paper 

entitled “XXX” and Huang et al.’s (2009) paper. Both 

this method and traditional methods and those based 

on extreme value theory utilize the sliding window 

procedure. In the first step, data are divided into two 

groups: in-sample and out-of-sample. Next, the VaR 

on day 1324 is estimated using the first 1323 

observations. For this purpose, the parameters required 

by the models need to be initially estimated. Then, 

VaR can be calculated according to the estimated 

parameters. Afterward, the VaR on day 1325 is 

estimated based on observations on day 2 until day 

1324. This process is continued until the end of the 
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out-of-sample period to eventually reach 399 estimates 

for each method at any of the 95% and 99% 

confidence levels. 

 

4.6. Estimating Value at Risk using 

traditional methods 

To compare the performance of the copula-GARCH 

model with traditional model, the VaR of the portfolio 

is calculated by employing traditional methods such as 

historical simulation and variance-covariance. The 

historical simulation method assumes that the 

distribution of returns is repeated. Here, the VaR of the 

portfolio is calculated using historical data. The 

variance-covariance method, on the other hand, 

assumes that the distribution of returns is a normal or 

Student’s t distribution. 

 

4.7. Estimating Value at Risk using the 

extreme value theory 

A) Extreme values: 

Extreme values include events like large market falls, 

failure of enterprises in fulfilling their obligations, 

financial market crisis, and natural catastrophes. 

Extreme values form based on the central limit 

theorem. 

B) Generalized Extreme Value (GEV) Theory 

Let 𝑓(𝑥) be the probability density function, and 𝐹(𝑥) 

be the cumulative distribution function X. Moreover, 

let the alternating sequence X in periods 1,2,… , 𝑛 be 

represented as X1, 𝑋2, … , 𝑋𝑛. Extreme values are 

defined as maxima and minima of n independent 

uniformly distributed random variables X1, 𝑋2, … , 𝑋𝑛. 

The maximum and minimum values of the variable X 

during the period 𝑛 are denoted by 𝑋𝑚𝑎𝑥.𝑛 and 𝑋𝑚𝑖𝑛.𝑛, 

respectively: 

 

𝑋𝑚𝑎𝑥.𝑛 = max(𝑋1, 𝑋2, … , 𝑋𝑛) (9) 

 

𝑋𝑚𝑖𝑛.𝑛 = min(𝑋1, 𝑋2, … , 𝑋𝑛) 

 =−max(−𝑋1,−𝑋2,… ,−𝑋𝑛) (10) 

 

where 𝑋𝑚𝑎𝑥.𝑛 and 𝑋𝑚𝑖𝑛.𝑛 are respectively the maximum 

and minimum variables obtained from a random 

sample 𝑛. Gumbel (1958) demonstrated that if 

variables X1, 𝑋2, … , 𝑋𝑛 statistically independent and 

uniformly distributed, the precise distribution of 

maxima and minima can be reiterated as a function of 

parent distribution, i.e., 𝐹(𝑥), and the length of the 

selected period, i.e., 𝑛.  

 

Hmax.n(𝑋) = [𝐹(𝑥)]
𝑛 (11) 

 

where Hmax.n(𝑋) is the precise distribution of Hmax.n. 

Jenkinson (X) proposed to represent the generalized 

distribution of the extreme value simply by the 

following equation: 

 

Hε,μ,σ(𝑥𝑚𝑎𝑥) = 𝑒𝑥𝑝 {− [1 +

𝜀𝑚𝑎𝑥 (
𝑥𝑚𝑎𝑥−𝜇𝑚𝑎𝑥

𝜎𝑚𝑎𝑥
)
−1/𝜀𝑚𝑎𝑥

]}  (12) 

 

where Hε,μ,σ(𝑥𝑚𝑎𝑥) is the cumulative distribution 

function of the maximum variable. 

This distribution includes three parameters, with 𝜇𝑚𝑎𝑥 

and 𝜎𝑚𝑎𝑥 as the first and second parameters. The 

former is the distribution position or criteria parameter, 

and the latter is the central tendency or scattering 

measure. These parameters are associated with and at 

the same time differ from the well-known parameters 

mean and standard deviation. The third parameter, 

𝜀𝑚𝑎𝑥, is the tail index, which implies the shape or 

density of the distribution sequence. 

C) Parameter estimation 

Extreme value parameters, namely 𝜇𝑚𝑎𝑥, 𝜎𝑚𝑎𝑥 , and 

𝜀𝑚𝑎𝑥 need to be estimated to estimate the risk 

measures. The desired percentiles can be easily 

calculated by estimating the above parameters and 

substituting them in the generalized extreme value 

(GEV) distribution. The parameters are estimated 

mainly using the maximum likelihood [estimation] 

method. This approach has several advantages, 

including a powerful theoretical foundation, consistent 

estimators, and asymptotically normal estimators if 

ε ≥ −1/2. 

D) Calculating generalized extreme value (GEV) 

distribution percentiles 

The GEV distribution percentiles are calculated using 

the following formula. The resulting value is the GEV 

distribution percentile for the cumulative probability 𝑝. 

(13) 

𝑥max =

{
μmax − (

σmax

εmax
) [1 − (−Inp)−ε]   if (Frechet, ε > 0)

μmax − σmax[In(−Inp)]        if (Gumbel, ε = 0)
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E) Calculating Value at Risk (VaR) 

To calculate the VaR, the desired percentile must be 

extracted from the distribution of returns or loss of 

assets. To transfer the percentiles of the extreme value 

distribution to those of the parent distribution, a 

relationship must be established between the 

probabilities of these distributions in some way. To put 

it differently, the probability distribution of extreme 

values 𝑋𝑚𝑎𝑥 should be linked to the parent 

probability distribution X. 

 

𝑥 =  

{
 
 

 
 

𝑖𝑓(𝐹𝑟𝑒𝑐ℎ𝑒𝑡, 𝜀 > 0)

𝜇𝑚𝑎𝑥 − (
𝜎𝑚𝑎𝑥

𝜀𝑚𝑎𝑥
) [1 − (−𝑛𝐼𝑛(1 − 𝛼))−𝜀𝑚𝑎𝑥]

𝑖𝑓(𝐺𝑢𝑚𝑏𝑒𝑙, 𝜀 = 0)

𝜇𝑚𝑎𝑥 − 𝜎𝑚𝑎𝑥[𝐼𝑛(−𝑛𝐼𝑛(1 − 𝛼)]

 (14) 

 

This percentile is the same as the percentage VaR. 

 

Comparing the performance of VaR 

estimation models 

In this study, a novel method for evaluating the 

performance of VaR models using the fuzzy 

multicriteria decision-making models is proposed, 

which has not been addressed in similar research. This 

section introduces two models for evaluating different 

VaRs, commonly known as backtesting. In a 

backtesting method, the accuracy of the VaR model is 

evaluated using a constant portfolio. Portfolio weights 

remain constant during backtesting. The results of a 

given backtesting model depend on portfolio 

constituents and the VaR model assumptions. This 

study employs the sliding window method; thus, you 

need to get familiar with the concept of “hit sequence.” 

Let’s assume that there are 1500 observations of daily 

portfolio return in the past, and 1000 observations are 

used to estimate the VaR. Using the observations on 

day 1 until day 1000, the VaR on day 1001 is 

estimated and compared with the actual loss. If the 

actual loss is greater than the calculated VaR, meaning 

an exception (success) has occurred, the variable 𝐼1001  

is set to 1 (success); otherwise, it is set to 0 (failure). 

Then, based on the observations on day 2 until day 

1001, the VaR on day 1002 is estimated and compared 

with the actual loss. If once again an exception has 

occurred, 𝐼1001 = 1; otherwise, 𝐼1002 = 0. This process 

is continued until the VaR on day 1500 is estimated 

based on observations on day 500 until day 1499. 

Then, 𝐼1500  is calculated. Now, we have an n = 500 

series of 0 and 1, referred to as “hit sequence,” which 

indicates whether VaR has been violated in the last 

500 days. In other words, if 𝑋𝑡,𝑡+1 denotes actual loss 

from day 𝑡 until day 𝑡 + 1, the hit function can be 

expressed as follows:  

 

𝐼𝑡+1(𝛼) = {
1     𝑖𝑓       𝑋𝑡,𝑡+1 ≤ −𝑉𝑎𝑅(𝛼)

0    𝑖𝑓       𝑋𝑡,𝑡+1 > −𝑉𝑎𝑅(𝛼)
 (15) 

 

Therefore, a hit sequence like (1, 00, 1, 0, …, 1) 

determines whether VaR has been violated in the past.  

 

1) Unconditional coverage property 

A loss event probability greater than the reported VaR, 

𝑉𝑎𝑅𝑡(𝛼) must be precisely equal to α × 100% (i.e., 

𝑝𝑟(𝐼𝑡+1(𝛼) = 1) = 𝛼). The observation of losses 

higher than VaR (successes) with a repetition greater 

than α × 100% suggests that the VaR criterion 

systematically underestimates the actual risk of the 

portfolio. Below, two different backtesting methods 

will be introduced. 

 

Unconditional coverage test 

The unconditional coverage test, which was introduced 

by Kupiec (1995), is conducted based on the number 

of successes. It was later generalized by Christoffersen 

(1998) to the conditional state. The unconditional 

coverage test indeed tests the null hypothesis that the 

hit function (which is assumed to have independent, 

identically distributed (i.i.d.) Bernoulli distribution) 

has a constant probability of success equal to the 

significance level (α) of the calculated VaR model. 

The test statistic is as follows: 

 

𝐿𝑅𝑢𝑐 =  
𝜋𝑒𝑥𝑝
𝑛1 (1−𝜋𝑒𝑥𝑝 )

𝑛0

𝜋𝑜𝑏𝑠
𝑛1 (1−𝜋𝑜𝑏𝑠 )

𝑛0  (16) 

 

where n is the total sample size, 𝑛1 is the total 

number of successes, and 𝑛0  =  𝑛 – 𝑛1 is the [total] 

number of failures. Moreover, 𝜋𝑒𝑥𝑝  =  𝛼 and 𝜋𝑜𝑏𝑠  =

 𝑛1/𝑛. The result of multiplying the natural logarithm 

of this statistic by – 2 will be asymptotically chi-

square distributed. If the value of the calculated 

statistic is greater than the critical value, the null 

hypothesis is rejected, meaning that the VaR 

estimation model is not accurate. 
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Dowd’s ranking method 

Dow proposed a novel method for comparing various 

VaR estimation models. Here, a loss function is first 

defined as follows: 

 

𝐶𝑡 = {
(𝑉𝐴𝑅

𝛼,𝑡
− 𝑟𝑡)𝑖𝑓 𝑟𝑡 < 𝑉𝐴𝑅𝛼,𝑡

0 𝑖𝑓 𝑟𝑡 > 𝑉𝐴𝑅𝛼,𝑡
 (17) 

 

The quadratic score function can be expressed as 

follows. The method with the least loss is the best 

method. 

 

𝑄𝑆 = 
2

𝑛
∑ (𝐶𝑡)

2𝑛
𝑡=1  (18) 

 

Comparing performance using fuzzy TOPSIS 

This study uses the ranks obtained from the VaR 

estimation models based on the unconditional 

coverage test procedure (as a statistical method that 

has caught the attention of risk-indifferent investors), 

the Dowd’s loss function method (as an important 

method from risk-averse (conservative) investors’ 

point of view), and ranking given the prediction 

accuracy level (as an important method from risk-

taking investors’ point of view), as the decision-

making matrix of the multicriteria decision-making 

model. The fuzzy multicriteria decision-making (fuzzy 

TOPSIS) method is employed because the decision-

maker has attached relative importance to the three 

methods above. In Chen and Huang’s fuzzy TOPSIS 

method, the following steps are generally taken: after 

running the algorithm, the decision-making matrix D 

(an 𝑚 ∗ 𝑛 matrix) and the index weights vector 

relative to the target W, as the input of the algorithm, 

must be initially formed: 

 

𝐷 =

  
𝐴1
⋮
𝐴𝑖
⋮
𝐴𝑚

    𝑋1   ⋯ 𝑋𝑗  ⋯  𝑋𝑛    

[
 
 
 
 
𝑥̃11 ⋯ 𝑥̃1𝑗 ⋯ 𝑥̃1𝑛
⋮  ⋮         ⋮
𝑥̃𝑖1
⋮
𝑥̃𝑚1

⋯   
⋯

𝑥̃𝑖𝑗
 
 ⋯ 𝑥̃𝑖𝑛

   ⋮
  𝑥̃𝑚𝑗

  
 
⋯

⋮     
𝑥̃𝑚𝑛]

 
 
 
 

 

 

{
𝑥̃𝑖𝑗 = (𝑎𝑖𝑗 , 𝑏𝑖𝑗 , 𝑐𝑖𝑗)            If it is a triangular fuzzy number.

𝑥̃𝑖𝑗 = (𝑎𝑖𝑗 , 𝑏𝑖𝑗 , 𝑐𝑖𝑗 , 𝑑𝑖𝑗) If it is a trapezoidal fuzzy number.
 

 

𝑊 = (𝑤̃1, ⋯ , 𝑤̃𝑗 , ⋯ , 𝑤̃𝑛);  {
𝑤̃𝑗 = (𝛼𝑗 , 𝛽𝑗 , 𝜒𝑗)           اIf it is a triangular fuzzy number.

𝑤̃𝑗 = (𝛼𝑗 , 𝛽𝑗 , 𝜒𝑗 , 𝛿𝑗) If it is a triangular fuzzy number.
 (19) 

 

Step 1. Normalizing the decision-making matrix. In the first step, the decision-making matrix should be normalized 

to make its elements “unscaled.” There are several normalization methods. For example, Chen and Huang applied 

the linear normalization method. For this purpose, the maximum value of each column x+
j and the minimum value 

of each column x-
j need to be determined. Furthermore, rij values can be calculated using the following equations: 

When Xij’s are fuzzy (a triangular number: 𝑥
~

𝑖𝑗 = (𝑎𝑖𝑗 , 𝑏𝑖𝑗 , 𝑐𝑖𝑗) or a trapezoidal number:), rij’s are definitely fuzzy as 

well. If fuzzy numbers are triangular and 𝑥
~

𝑗
+ = (𝑎𝑗

+, 𝑏𝑗
+, 𝑐𝑗

+) and 𝑥
~

𝑗
− = (𝑎𝑗

−, 𝑏𝑗
−, 𝑐𝑗

−) are respectively the 

maximum and minimum scores, then we have: 

 

𝑟̃𝑖𝑗 = {

𝑥̃𝑖𝑗(/)𝑥̃𝑗
+ = (

𝑎𝑖𝑗

𝑐𝑗
+ ,

𝑏𝑖𝑗

𝑏𝑗
+ ,

𝑐𝑖𝑗

𝑎𝑗
+) ; 𝐼𝑓 𝑥̃𝑖𝑗 ℎ𝑎𝑠 𝑎 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑎𝑠𝑝𝑒𝑐𝑡.

𝑥̃𝑗
−(/)𝑥𝑖𝑗 = (

𝑎𝑗
−

𝑐𝑖𝑗
,
𝑏𝑗
−

𝑏𝑖𝑗
,
𝑐𝑗
−

𝑎𝑖𝑗
) ; 𝐼𝑓 𝑥̃𝑖𝑗 ℎ𝑎𝑠 𝑎 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑎𝑠𝑝𝑒𝑐𝑡.

 (20) 

 

Thus, the normalized matrix D is reduced (converted) to D’: 
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𝐷′ =

  
𝐴1
⋮
𝐴𝑖
⋮
𝐴𝑚

    𝑋1   ⋯ 𝑋𝑗  ⋯  𝑋𝑛    

[
 
 
 
 
𝑟̃11 ⋯ 𝑟̃1𝑗 ⋯ 𝑟̃1𝑛
⋮  ⋮         ⋮
𝑟̃𝑖1
⋮
𝑟̃𝑚1

⋯   
⋯

𝑟̃𝑖𝑗
 
 ⋯ 𝑟̃𝑖𝑛

   ⋮
  𝑟̃𝑚𝑗

  
 
⋯

⋮    
𝑟̃𝑚𝑛]

 
 
 
 

 (21) 

 

Step 2. Obtaining the normalized weighted matrix. 

For triangular fuzzy numbers: 

 

{

𝑣̃𝑖𝑗 = 𝑟̃𝑖𝑗(∙)𝑤̃𝑗 = (
𝑎𝑖𝑗

𝑐𝑗
+ ,

𝑏𝑖𝑗

𝑏𝑗
+ ,

𝑐𝑖𝑗

𝑎𝑗
+) (∙)(𝛼𝑗 , 𝛽𝑗 , 𝜒𝑗) = (

𝑎𝑖𝑗

𝑐𝑗
+ ∙ 𝛼𝑗 ,

𝑏𝑖𝑗

𝑏𝑗
+ ∙ 𝛽𝑗 ,

𝑐𝑖𝑗

𝑎𝑗
+ ∙ 𝜒𝑗)

𝑣̃𝑖𝑗 = 𝑟̃𝑖𝑗(∙)𝑤̃𝑗 = (
𝑎𝑗
−

𝑐𝑖𝑗
,
𝑏𝑗
−

𝑏𝑖𝑗
,
𝑐𝑗
−

𝑎𝑖𝑗
) (∙)(𝛼𝑗 , 𝛽𝑗 , 𝜒𝑗) = (

𝑎𝑗
−

𝑐𝑖𝑗
∙ 𝛼𝑗 ,

𝑏𝑗
−

𝑏𝑖𝑗
∙ 𝛽𝑗 ,

𝑐𝑗
−

𝑎𝑖𝑗
∙ 𝜒𝑗)

 (22) 

 

For trapezoidal fuzzy numbers: 

 

{

𝑣̃𝑖𝑗 = 𝑟̃𝑖𝑗(∙)𝑤̃𝑗 = (
𝑎𝑖𝑗

𝑑𝑗
+ ,

𝑏𝑖𝑗

𝑐𝑗
+ ,

𝑐𝑖𝑗

𝑏𝑗
+ ,

𝑑𝑖𝑗

𝑎𝑗
+) (∙)(𝛼𝑗 , 𝛽𝑗 , 𝜒𝑗 , 𝛿𝑗) = (

𝑎𝑖𝑗

𝑑𝑗
+ ∙ 𝛼𝑗 ,

𝑏𝑖𝑗

𝑐𝑗
+ ∙ 𝛽𝑗 ,

𝑐𝑖𝑗

𝑏𝑗
+ ∙ 𝜒𝑗 ,

𝑑𝑖𝑗

𝑎𝑗
+ ∙ 𝛿𝑗)

𝑣̃𝑖𝑗 = 𝑟̃𝑖𝑗(∙)𝑤̃𝑗 = (
𝑎𝑗
−

𝑑𝑖𝑗
,
𝑏𝑗
−

𝑐𝑖𝑗
,
𝑐𝑗
−

𝑏𝑖𝑗
,
𝑑𝑗
−

𝑎𝑖𝑗
) (∙)(𝛼𝑗 , 𝛽𝑗 , 𝜒𝑗 , 𝛿𝑗) = (

𝑎𝑗
−

𝑑𝑖𝑗
∙ 𝛼𝑗 ,

𝑏𝑗
−

𝑐𝑖𝑗
∙ 𝛽𝑗 ,

𝑐𝑗
−

𝑏𝑖𝑗
∙ 𝜒𝑗 ,

𝑑𝑗
−

𝑎𝑖𝑗
∙ 𝛿𝑗)

 (23) 

 

The first equation is applied when the 𝑗th criterion has a positive aspect, while the second equation is applied when 

the 𝑗th criterion has a negative aspect. The calculation results are then inserted into the matrix 𝑣, yielding the 

following matrix: 

𝑣 =

  
𝐴1
⋮
𝐴𝑖
⋮
𝐴𝑚

    𝑋1   ⋯       𝑋𝑗     ⋯  𝑋𝑛         

[
 
 
 
 
𝑣̃11 ⋯ 𝑣̃1𝑗     ⋯ 𝑣̃1𝑛
⋮  ⋮          ⋮
𝑣̃𝑖1
⋮
𝑣̃𝑚1

⋯   
⋯

𝑣̃𝑖𝑗     ⋯ 𝑣̃𝑖𝑛
         ⋮
     𝑣̃𝑚𝑗

     
 
⋯

 ⋮         
𝑣̃𝑚𝑛      ]

 
 
 
 

 (24) 

 

Step 3. Finding the positive ideal solution (PIS), denoted by 𝐴∗ and negative ideal solution (NIS), denoted by 𝐴−. 

 

where 
𝑣̃𝑗
∗ = max

𝑖
{𝑣𝑖𝑗4} 𝑣̃𝑗    و    

− = min
𝑖
{𝑣𝑖𝑗1} , 𝐴∗ = (𝑣̃1

∗, 𝑣̃2
∗, ⋯ , 𝑣̃𝑛

∗)  

𝑖 = 1,2,⋯ ,𝑚,    𝑗 = 1,2,⋯ , 𝑛. 𝐴− = (𝑣̃1
−, 𝑣̃2

−,⋯ , 𝑣̃𝑛
−)

 (25) 

 

Step 4. Measuring the distance of each option from the positive and negative ideal (𝑑𝑖
+, 𝑑𝑖

−). 

 

𝑑𝑖
∗ = ∑ 𝑑𝑣(𝑣̃𝑖𝑗 , 𝑣̃𝑗

∗),𝑛
𝑗=1 𝑖 = 1,2,⋯ ,𝑚

𝑑𝑖
− = ∑ 𝑑𝑣(𝑣̃𝑖𝑗 , 𝑣̃𝑗

−),𝑛
𝑗=1 𝑖 = 1,2,⋯ ,𝑚

 (26) 

 

where 𝑑𝑣(0,0) is the distance measurement between two fuzzy numbers. 
 

Step 5. Calculating the relative proximity of each option to the ideals (𝐶𝑖
+). This index is defined to combine the 

𝑆𝑖
+ and 𝑆𝑖

− values, and consequently, to compare the options, which can be calculated using the following equation: 

𝐶𝑖
+ =

𝑆𝑖
+

𝑆𝑖
++𝑆𝑖

− (27) 

Step 6. Ranking the options. The options can be ranked based on the descending order of 𝐶𝑖
+s values. 
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5. Findings 

Descriptive statistics of research data 

In the sample under study, each asset has 1723 daily 

returns over a seven-year period. Table 1 presents the 

details of one symbol (وبانک). 

 

Table 1. Descriptive statistics of research data 

 Investment company (وبانک) 

Sample size 1722 

Mean 0.00177 

SD 0.0099 

Skewness 0.3563 

Kurtosis 4.1347 

ARCH test Q-statistics P-value 

LM(4) 250.2639 0 

LM(6) 268.8194 0 

LM(8) 269.4590 0 

LM(10) 281.9260 0 

Jarque–Bera test JB-statistics P-value 

128.81 0.000 

 

 
Fig. 1: Daily return of assets in this study 

 

Fig. 1 clearly shows the effect of ARCH on four time-

series of asset returns. Hence, it was tested using the 

ARCH test, the results of which are presented in Table 

1. The ARCH test results suggest that ARCH affects 

all the four time-series, indicating heteroscedasticity in 

the time-series. Furthermore, all the four time-series 

have large kurtosis, suggesting that the distribution of 

asset returns has a longer sequence than the normal 

distribution. The Jarque-Bera test is utilized to test the 

normality of the assets introduced in this research. The 

results (Tables 1 and 2) imply their non-normality. 

Results of marginal models (explaining and 

estimating the mean and conditional variance 

model) 

To achieve i.i.d. distributions and to estimate the 

variance, the mean and conditional variance model is 

simultaneously explained and estimated here. To this 

aim, the Box-Jenkins methodology (ARIMA) is 

applied to model the average return of assets in this 

research and heteroscedasticity models (GARCH) to 

model the research conditional variance. The Box-

Jenkins method seeks to answer the following 

question, “How can we determine whether a given 

time-series follows a pure autoregressive process, a 

pure moving average process, or an autoregressive-

moving average (ARMA) process. 

Estimating the Value at Risk using the copula-

ARIMA-GARCH model 

In the first step, a model is estimated for each marginal 

distribution using the ARIMA-GARCH model. This is 

followed by the standardization of the error terms in 

these models. If the standardized error term time-series 

of the marginal distributions is demonstrated as 

{𝜂𝑖  , 𝜂𝑗 , 𝜂𝑘 , 𝜂𝑙}, the marginal distribution parameters 

can be measured using the maximum likelihood 

[estimation] method by converting 𝑢𝑖 = 𝐹(𝜂𝑖), 𝑢𝑗 =

𝐹(𝜂𝑗), 𝑢𝑘 = 𝐹(𝜂𝑘), and 𝑢𝑙 = 𝐹(𝜂𝑙). After measuring 

the copula function parameters using the algorithm 

described in Chapter 3, 1000 intervals are simulated 

for each marginal distribution. The quantile of the 

portfolio return can be calculated by converting the 

simulated returns of the marginal distributions to 

portfolio return 𝑋𝑝,𝑡 = 𝑤1𝑋𝑖,𝑡 + 𝑤2𝑋𝑗,𝑡 + 𝑤3𝑋𝑘,𝑡 +

𝑤4𝑋𝑙,𝑡. 

 

Comparing the various methods 

For a statistical test, the already explained backtest 

methods are used. Table 8 shows Kupiec’s 

unconditional coverage test results. Given the 

calculated statistic values at 5% and 1% confidence 

levels and their corresponding critical values, it is 

observed that the null hypothesis is rejected at 95% 

and 99% confidence levels for the variance-covariance 

method. It has not been rejected for other methods, 

indicating the inaccuracy of the variance-covariance 

model. 

Table 3 shows the results of Dowd’s ranking method 

and the ranks assigned to the methods at the 

significance level of VaR calculation. Naturally, the 

results of the variance-covariance model are not 

presented in subsequent tables because it has been 

rejected in the unconditional coverage test. Due to the 

very slight difference between the estimated VaRs and 

the actual portfolio return, this criterion seems to have 
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failed in accurately rank the different VaRs, as the results are quite close to each other. 

 

Table 2. Unconditional coverage test results 

Trading days 399 

Critical value 5% 3.84 

Critical value 1% 6.63 

VaR estimation method 5% statistic 1% statistic 

copula-ARIMA-GARCH model 0.2071 0.000025 

Historical simulation model 2.8914 0.2714 

Variance-Covariance model 212.17 337.72 

GEV model 2.5586 0.8859 

 
Table 3. Results of Dowd’s ranking method at 5% and 1% confidence levels 

Significance level 5% 1% 

VaR estimation method 
Dowd’s loss 

function 
Rank 

Dowd’s loss 

function 
Rank 

copula-ARIMA-GARCH model 0.000933795 2 0.001539425 3 

Historical simulation model 0.001128313 3 0.000940092 1 

GEV model 0.000920131 1 0.0010694 2 

 

Comparing the performance using fuzzy 

TOPSIS 

This study uses the ranks obtained from the VaR 

estimation models based on the unconditional 

coverage test procedure (as a statistical method that 

has caught the attention of risk-indifferent investors), 

the Dowd’s loss function method (as an important 

method from risk-averse (conservative) investors’ 

point of view), and ranking given the prediction 

accuracy level (as an important method from risk-

taking investors’ point of view), as the decision-

making matrix of the multicriteria decision-making 

model. The fuzzy multicriteria decision-making (fuzzy 

TOPSIS) method is employed because the decision-

maker has attached relative importance to the three 

methods above. This study utilizes Chen’s (2006) 

fuzzy TOPSIS method, thanks to the wide application 

of the TOPSIS method and its advantages over other 

MCDM methods. To determine the degree to which 

risk-aversion (or risk-taking) affects the decision-

making process, we intend to define a variety of 

investors and decision-makers. 

In this study, Chen and Huang’s scale is applied to 

convert linguistic terms to fuzzy numbers, as 

illustrated in Fig. 2. 

 

Table 4. Classification of various decision-makers and financial institutions 

The relative utility of the 

statistical method 

The relative utility of the 

prediction accuracy 

The relative utility of the 

time function 
Type of investor 

    

Very low Low High Risk-averse 

Very low Medium Medium Risk-indifferent 

Very low High Low Risk-taking 

 

 
Fig. 2: Chen and Huang’s scale to convert linguistic terms to fuzzy numbers 
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This method utilizes linear normalization to 

simplify (streamline) calculations, along with 

triangular fuzzy numbers. Finally, the decision-making 

and ranking processes are conducted by computing the 

closeness coefficient (𝐶𝐶𝑖) for the 𝑖th alternative. The 

ranks obtained from each estimate using the 

unconditional coverage test procedure, Dowd’s loss 

function method at 1% and 5% confidence levels and 

ranking based on prediction accuracy are displayed in 

Table 5. This is indeed our decision-making matrix, 

which is the primary input of our decision-making 

methods. 

The initial normalized decision-making matrix is 

multiplied by the relative weight of the criteria. Then, 

the distance of the alternatives from these two points is 

calculated by defining the positive and negative fuzzy 

ideals. Next, the closeness coefficient is measured by 

dividing the distance of each alternative from the 

negative ideal by the sum of the distances of the 

alternative from the ideals. This coefficient is used to 

rank the estimators and for decision-making. The 

normalized decision-making matrix is presented in 

Table 6. 

For example, Table 7 depicts the results of 

multiplying the normalized decision-making matrix by 

the relative weight of criteria for a risk-averse investor. 

Using the results shown in Table 7, the fuzzy positive 

ideal solution (FPIS) and the fuzzy negative ideal 

solution (FNIS) are defined as follows. 

After calculating the distance of the alternatives 

from the positive and negative ideal points, the 

closeness coefficient (CC) is calculated, whose results 

are presented in Table 8. 

Then, estimator ranking and decision-making are 

performed based on the closeness coefficient results 

and Table 4. 

 

 

Table 5. Initial decision-making matrix 

Obtained rank 

based on the 

unconditional 

coverage method 

Obtained rank 

based on the 

prediction 

accuracy 

Obtained rank 

based on the 1% 

loss function 

Obtained rank 

based on the 

5% loss 

function 

Indices 

 

Alternatives 

1 1 3 2 copula-ARIMA-GARCH model 

1 3 1 3 Historical simulation model 

1 2 2 1 GEV model 

2 4 4 4 Variance-covariance model 

 
 

Table 6. Initial normalized decision-making matrix 

Obtained rank 

based on the 

unconditional 

coverage method 

Obtained rank 

based on the 

prediction 

accuracy 

Obtained rank 

based on the 1% 

loss function 

Obtained rank 

based on the 

5% loss 

function 

Indices 

 

Alternatives 

1 1 0.33 0.5 copula-ARIMA-GARCH model 

1 0.33 1 0.33 Historical simulation model 

1 0.5 0.5 1 GEV model 

0.5 0.25 0.25 0.25 Variance-covariance model 

 
 

Table 7. Product of the normalized decision-making matrix by the relative weight of criteria for a risk-averse investor 

Obtained rank 

based on the 

unconditional 

coverage method 

Obtained rank 

based on the 

prediction 

accuracy 

Obtained rank 

based on the 1% 

loss function 

Obtained rank 

based on the 5% loss 

function 

Indices 

 

 

Alternatives 

(0.0, 0.0, 0.2) (0.7, 0.8, 0.9) (0.03, 0.06, 0.1) (0.05, 0.1, 0.15) copula-ARIMA-GARCH model 

(0.0, 0.0, 0.2) (0.23, 0.26, 0.3) (0.1, 0.2, 0.3) (0.03, 0.06, 0.1) Historical simulation model 

(0.0, 0.0, 0.2) (0.35, 0.4, 0.45) (0.05, 0.1, 0.15) (0.1, 0.2, 0.3) GEV model 

(0.0, 0.0, 0.2) (0.175, 0.2, 0.225) (0.025, 0.05, 0.075) (0.025, 0.05, 0.075) Variance-covariance model 
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Table 8. Closeness coefficient for a risk-averse investor 

Closeness coefficient 

(CC) 

Closeness coefficient 

Alternatives 

0.72 copula-ARIMA-GARCH model 

0.26 Historical simulation model 

0.45 GEV model 

0.00 Variance-covariance model 

 

 

Ranking the estimators for a risk-averse 

investor 

copula-ARIMA-GARCH>GEV>Historical 

simulation>variance-covariance model 

The preceding process is repeated for risk-indifferent 

and highly risk-taking investors. The results of 

closeness coefficients are shown in Table 9. 

 

Table 9. Closeness coefficient for risk-taking and risk-indifferent investors 

Closeness coefficient 

(CC) for a risk-indifferent investor 

Closeness coefficient 

(CC) for a risk-taking investor 

Closeness coefficient 

 

Alternatives 

0.61 0.39 copula-ARIMA-GARCH model 

0.34 0.46 Historical simulation model 

0.51 0.60 GEV model 

0.00 0.00 Variance-covariance model 

 

Ranking the estimators for a risk-taking investor 

GEV>Historicalsimulation>copula-ARIMA-

GARCH>Variance-covariance model 

Ranking the estimators for a risk-taking investor 

copula-ARIMA-GARCH>GEV>Historical 

simulation>Variance-covariance model 

 

6. Conclusions 
Investors take into consideration the project risk and 

return at the same time as one of the primary factors 

contributing to investment decisions when they are 

about to invest in different projects. It should be 

acknowledged that risk is an integral part of the return, 

which must be taken into account when deciding the 

return of different investment projects. 

This study aimed to calculate the risk more 

accurately and develop methods of performance 

evaluation of value at risk (VaR) models. Herein, by 

building a portfolio composed of the shares of four 

investment companies, with stock symbols A, B, C, 

and D  we seek to answer assumption study. Copula 

functions used to calculate the VaR of the portfolio in 

the field of risk management.The results indicated that 

combining the copula theory with the ARIMA-

GARCH model could serve as a powerful tool for 

calculating the VaR. The mean and conditional 

variance model was simultaneously explained and 

estimated to obtain i.i.d. distributions and to estimate 

the variance. For this purpose, the Box-Jenkins 

methodology (ARIMA) was employed to model the 

average return of assets in the research and 

heteroscedasticity models (GARCH) to model the 

research conditional variance. Herein, a novel method 

was proposed to evaluate the performance of VaR 

models using the fuzzy multicriteria decision-making 

(MCDM) models. This study uses the ranks obtained 

from the VaR estimation models based on the 

unconditional coverage test procedure (as a statistical 

method that has caught the attention of risk-indifferent 

investors), the Dowd’s loss function method (as an 

important method from risk-averse (conservative) 

investors’ point of view), and ranking given the 

prediction accuracy level (as an important method 

from risk-taking investors’ point of view), as the 

decision-making matrix of the multicriteria decision-

making model. The fuzzy multicriteria decision-

making (fuzzy TOPSIS) method is employed because 

the decision-maker has attached relative importance to 

the three methods above. This study utilizes Chen’s 

(2005) fuzzy TOPSIS method, thanks to the wide 

application of the TOPSIS method and its advantages 

over other MCDM methods. The results revealed that 

the calculated VaR by the copula-ARIMA-GARCH 

model had yielded the best performance in risk-taking 

and risk-indifferent decision-makers and investors’ 

opinion due to the importance they attach to the 
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prediction accuracy. Besides, risk-averse investors 

consider the GEV model as the best method due to the 

importance they attach to the loss function. 
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