- بناکار، مهسا، قالیباف اصل، حسن، مینویی، مهرزاد (1400)، تبیین و آزمون مدل تلاطم و سرریز در بورس اوراق بهادار تهران (مبتنی بر مدلهای خانواده کاپولا)، مهندسی مالی و مدیریت اوراق بهادار، شماره 47، صص 534-563
- سعیدی، حسین، محمدی، شاپور (1390)، پیشبینی نوسانات بازده بازار با استفاده از مدلهای ترکیبی گارچ-شبکه عصبی، فصلنامه بورس اوراق بهادار، شماره 16، ص 153-174
- فراهانی برز آبادی، مریم، قلی زاده، محمدحسن، چیرانی، ابراهیم (1399)، مدلسازی متغیر زمانی نسبت بهینه پوشش ریسک با استفاده از قراردادهای آتی: رهیافت ترکیبی توابع کاپولای زوجی و تجزیه موجک، چشمانداز مدیریت مالی، دوره 10، شماره 30
- فرهادیان، علی و نیلچی، مسلم (1401). سرریز تلاطمی بازار نفت در بازار سهام با الگوی نوسانات تصادفی چند متغیره بیزی، دانش سرمایهگذاری،11(43)،129-148.
- مرادی، مهدی، صدوقی یزدی،هادی، عبدالهیان، جواد (1394)، رویکرد مهندسی جدید برای پیشبینی نوسان شاخصهای بورس اوراق بهادار تهران، مجله پیشرفتهای حسابداری دانشگاه شیراز، دوره هفتم، شماره دوم
- Billio, M., Casarin, R., & Osuntuyi, A. (2016). Efficient Gibbs sampling for Markov switching GARCH models. Computational Statistics & Data Analysis, 100, 37-57.
- Bladt, Martin., McNeil, Alexander.j (2021), Time series copula models using d-vines and v-transforms, Econometrics and Statistics, In Press, Corrected Proof
- Bollerslev, T. (1986). Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econometrics, 31, 307-327.
- Brix, A., Lunde, A., & Wei, W. (2018). A generalized Schwartz model for energy spot prices — Estimation using a particle MCMC method. Energy Economics, 72, 560-582.
- Chan, J. (2015). The stochastic volatility in mean model with time-varying parameters: an application to inflation modeling. Journal of Business & Economic Statistics, 35(1), 17-28.
- Chan, J., & Grant, A. (2016). Modeling energy price dynamics: GARCH versus stochastic volatility. Energy Economics, 54, 182-189.
- Chen, X., Fan, Y., 2006. Estimation of copula-based semiparametric time series models. Econ. 130 (2), 307–335.
- Diebold, F., Schorfheide, F., & Shin, M. (2017). Real-time forecast evaluation of DSGE models with stochastic volatility. NBER Working Paper Series, working paper 22615.
- Doucet, A., Pitt, M., Deligianndis, G., & Kohn, R. (2015). Efficient implementation of Markov chain Monte Carlo when using an unbiased likelihood estimator. Biometrika, 102(2), 295-313.
- Engle, R., Ito, T. and Lin, W., (1990). Meteor showers or heat waves? het- eroscedasticity intra-daily volatility in the foreign exchange markets. Econo- metrica, 58, 525-542.
- Figlewski, S. (1997). Forecasting volatility. Financial Markets, Institutions and Instruments, 6, 1-88.
- Gatheral, J., Jaisson, T., & Rosenbaum, M. (2018). Volatility is rough. Quantitative Finance, 18(6), 933-949.
- Glosten, L., Jagannathan, R., & Runkle, D. (1993). On the relation between the expected value and the volatility of the nominal excess return on stocks. The Journal of Finance, 48(5), 1779-1801.
- Jacquier, E., Polson, N., & Rossi, P. (1994). Bayesian analysis of stochastic volatility models. Journal of Business and Economic Statistics, 12, 371-417.
- Kastner, G., Fruhwirth-Schnatter, S., & Lopes, H. (2017). Efficient Bayesian inference for multivariate factor stochastic volatility models. Journal of Computational and Graphical Statistics, 26(4), 905- 917.
- Kim, J., Jung, H., & Qin, L. (2016). Linear time-varying regression with a DCC-GARCH model for volatility. Applied Economics, 48(17), 1573-1582.
- Kim, J., Park, Y., & Ryu, D. (2017). Stochastic volatility of the futures prices of emission allowances: A Bayesian approach. Physica A: Statistical Mechanics and its Applications, 465, 714-724.
- Kim, S., Shephard, N., & Chib, S. (1998). Stochastic volatility: likelihood inference and comparison with ARCH models. The Review of Economic Studies, 65(3), 361-393.
- Klein, T., & Walther, T. (2016). Oil price volatility forecast with mixture memory GARCH. Energy Economics, 58, 46-58.
- Kristjanpoller, W., & Minutolo, M. (2016). Forecasting volatility of oil price using an Artificial Neural Network-GARCH model. Expert Systems With Applications, 65, 233-241.
- Lin, L., Liu, K., & Sloan, A. (2000). A noisy Monte Carlo algorithm. Physical Review D, 61. https://doi.org/10.1103/PhysRevD.61.074505
- Nelson, D. (1991). Conditional heteroskedasticity in asset returns: a new approach. Econometrica, 59(2), 347-370.
- Patton, A., & Sheppard, K. (2015). Good volatility, bad volatility: signed jumps and the persistence of volatility. Review of Economics and Statistics, 97(3), 683-697.
- Pinho, F., & Couto, R. (2017). Comparing volatility forecasting models during the global financial crisis. Communications in Statistics - Simulation and Computation, 46(7), 5257-5270.
- Pinho, F., Franco, G., & Silva, R. (2016). Modeling volatility using state space models with heavy tailed distributions. Mathematics and Computers in Simulation, 119, 108-127.
- Pitt, M. K., Shephard, N. (1999). Filtering via simulation: Auxiliary particle filters. Journal of the American statistical Association, 94(446), 590-599.
- Ravenzwaaij, D., Cassey, P., & Brown, S. (2018). A simple introduction to Markov Chain Monte–Carlo sampling. Download PDF Psychonomic Bulletin & Review, 25(1), 143-154.
- Roberts, G., & Rosenthal, S. (2009). Examples of Adaptive MCMC. Journal of Computational and Graphical Statistics, 18(2), 349-367.
- Salimans, T., Kingma, D., & Welling, M. (2015). Markov Chain Monte Carlo and variational inference: bridging the gap. JMLR Workshop and Conference Proceedings, 37, 1218-1226.
- Sentana, E. (1995). Quadratic ARCH models: A potential reinterpretation of ARCH models as second-order Taylor approximations. Unpublished paper (London School of Economics).
- Mitra (2020), Downside risk measurement in regime switching stochastic volatility, Journal of Computational and Applied Mathematics (2020), doi: https://doi.org/10.1016/j.cam.2020.112845
- Takaishi T. (2009) An Adaptive Markov Chain Monte Carlo Method for GARCH Model. In: Zhou J. (eds) Complex Sciences. Complex 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02469-6_22
- Taylor, S. J., (1982). Financial returns modelled by the product of two stochastic. Processes a study of daily sugar prices 1961-75, In Anderson, O. O., Time series Analysis: Theory and practice (1, 203-226, North-Holland: Amsterdom).
- Trucios, C., & Hotta, L. (2016). Bootstrap prediction in univariate volatility models with leverage effect. Mathematics and Computers in Simulation, 120, 91-103.
- Virbickaite, A., Ausín, M.C., & Galeano, P. (2020). Copula stochastic volatility in oil returns: Approximate Bayesian computation with volatility prediction. Energy Economics, 92, 104961.
- Yao, Y., Zhai, J., Cao, Y., Ding, X., Liu, Y., & Luo, Y. (2017). Data analytics enhanced component volatility model. Expert Systems With Applications, 84, 232-241.
|