تعداد نشریات | 50 |
تعداد شمارهها | 2,172 |
تعداد مقالات | 20,096 |
تعداد مشاهده مقاله | 23,681,797 |
تعداد دریافت فایل اصل مقاله | 21,754,875 |
A Modification on The Exponential Cubic B-spline for Numerical Simulation of Hyperbolic Telegraph Equations | ||
International Journal of Industrial Mathematics | ||
دوره 15، شماره 2، مهر 2023، صفحه 151-163 اصل مقاله (707.99 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.30495/ijim.2023.66141.1585 | ||
نویسندگان | ||
AR. Haghighi ![]() ![]() | ||
1Department of Mathematics, Allameh Tabatabai University, Tehran, Iran. | ||
2Department of Mathematics, Urmia University of Technology, Urmia, Iran. | ||
3Department of Mathematics Islamic Azad University, Central Tehran Branch,Tehran, Iran. | ||
4Department of Mathematics, School of Economics and Statistics, Guangzhou, China. | ||
چکیده | ||
In this paper the differential quadrature method is implemented to find numerical solution of two and three-dimensional telegraphic equations with Dirichlet and Neumann's boundary values. This technique is according to exponential cubic B-spline functions. So, a modification on the exponential cubic B- spline is applied in order to use as a basis function in the DQ method. Therefore, the Telegraph equation (TE) is altered to a system of ordinary differential equations (ODEs). The optimized form of Runge-Kutta scheme has been implemented by four-stage and three-order strong stability preserving (SSPRK43) to solve the resulting system of ODEs. We examined the correctness and applicability of this method by four examples of the TE. | ||
کلیدواژهها | ||
Telegraph equation (TE)؛ Exponential modified؛ Cubic B-spline function؛ SSP-RK43؛ Differential. quadrature method | ||
آمار تعداد مشاهده مقاله: 27 تعداد دریافت فایل اصل مقاله: 37 |