- AmirHossini, Z., . Masoumeh Ghobadi. (2016). Fuzzy MCDM Approach of Portfolio Evaluation and Selection. 7(27), 1-16. http://fej.iauctb.ac.ir/article_522039_1597745c523a7959cb6faf179fea810f.pdf
- Centeno, V., Georgiev, I. R., Mihova, V., & Pavlov, V. (2019). Price forecasting and risk portfolio optimization. AIP Conference Proceedings, 2164(1), 060006. https://doi.org/10.1063/1.5130808
- Chang, D.-Y. (1996). Applications of the extent analysis method on fuzzy AHP. European journal of operational research, 95(3), 649-655.
- Chen, K., Zhou, Y., & Dai, F. (2015, 29 Oct.-1 Nov. 2015). A LSTM-based method for stock returns prediction: A case study of China stock market. 2015 IEEE International Conference on Big Data (Big Data),
- Chen, W., Zhang, H., Mehlawat, M. K., & Jia, L. (2021). Mean–variance portfolio optimization using machine learning-based stock price prediction. Applied Soft Computing, 100, 106943. https://doi.org/https://doi.org/10.1016/j.asoc.2020.106943
- Cornuejols, G., & Tütüncü, R. (2006). Optimization methods in finance (Vol. 5). Cambridge University Press.
- Dezsi, E., & Nistor, I. A. (2016). Can deep machine learning outsmart the market? a comparison between econometric modelling and long-short term memory. Romanian Economic and Business Review.
- Fekri, M., & Barazandeh, B. (2019). Designing an Optimal Portfolio for Iran's Stock Market with Genetic Algorithm using Neural Network Prediction of Risk and Return Stocks.
- Freitas, F. D., De Souza, A. F., & de Almeida, A. R. (2009). Prediction-based portfolio optimization model using neural networks. Neurocomputing, 72(10), 2155-2170. https://doi.org/https://doi.org/10.1016/j.neucom.2008.08.019
- Gârleanu, N., & Pedersen, L. H. (2013). Dynamic trading with predictable returns and transaction costs. The Journal of Finance, 68(6), 2309-2340.
- Ghaffari-Nasab, N., Ahari, S., & Makui, A. (2011). A portfolio selection using fuzzy analytic hierarchy process: A case study of Iranian pharmaceutical industry. International Journal of Industrial Engineering Computations, 2(2), 225-236.
- Haddad, M. F. C. (2019). Sphere-sphere intersection for investment portfolio diversification—A new data-driven cluster analysis. MethodsX, 6, 1261-1278.
- Haddadi, M. r., Nademi, Y., & Tafi, F. (2021). Stock Portfolio Optimization with MAD and CVaR Criteria by Comparing Classical and Metaheuristic Methods. 12(47), 514-533. http://fej.iauctb.ac.ir/article_682742_947038fd1f3098f532a60f22128c92b8.pdf
- Haykin, S., & Network, N. (2004). A comprehensive foundation. Neural networks, 2(2004), 41.
- Karimi, A., & goodarzi dahrizi, s. (2020). Stock portfolio optimization using Imperialist Competitive Algorithm (ICA) and Particle Swarm Optimization (PSO) under Conditional Value at Risk (CVaR). 11(45), 423-444. http://fej.iauctb.ac.ir/article_679100_3e11579c3e410c1be3005d85278e9d69.pdf
- Lashgari, Z., & Safari, K. (2012). Portfolio selection using fuzzy analytic hierarchy process (FAHP). European Business Research Conference 2012 Proceedings,
- Lee, S. I., & Yoo, S. J. (2020). Threshold-based portfolio: the role of the threshold and its applications. The Journal of Supercomputing, 76(10), 8040-8057. https://doi.org/10.1007/s11227-018-2577-1
- LI, G.-c., & XIAO, Q.-x. (2013). Hybrid meta-heuristic algorithm for solving cardinality constrained portfolio optimization [J]. Application Research of Computers, 30(8), 2292-2297.
- Lwin, K. T., Qu, R., & MacCarthy, B. L. (2017). Mean-VaR portfolio optimization: A nonparametric approach. European Journal of Operational Research, 260(2), 751-766.
- Ma, Y., Han, R., & Wang, W. (2021). Portfolio optimization with return prediction using deep learning and machine learning. Expert Systems with Applications, 165, 113973. https://doi.org/https://doi.org/10.1016/j.eswa.2020.113973
- Markowitz, H. (1952). PORTFOLIO SELECTION*. The Journal of Finance, 7(1), 77-91. https://doi.org/10.1111/j.1540-6261.1952.tb01525.x
- Nasini, S., Labbé, M., & Brotcorne, L. (2021). Multi-market portfolio optimization with conditional value at risk. European Journal of Operational Research. https://doi.org/https://doi.org/10.1016/j.ejor.2021.10.010
- Navidi, S., Banihashemi, s., & Sanei, M. (2016). Three steps method for portfolio optimization by using Conditional Value at Risk measure. Journal of New Researches in Mathematics, 2(5), 43-60. https://jnrm.srbiau.ac.ir/article_9368_135d27e70ea09f03c8e2fd1a422feb59.pdf
- Patterson, J., & Gibson, A. (2017). Deep learning: A practitioner's approach. " O'Reilly Media, Inc.".
- Peng, X., & Luo, Z. (2021). Decision-making model for China’s stock market bubble warning: the CoCoSo with picture fuzzy information. Artificial Intelligence Review, 1-23.
- Raei, R., Basakha, H., & Mahdikhah, H. (2020). Equity Portfolio Optimization Using Mean-CVaR Method Considering Symmetric and Asymmetric Autoregressive Conditional Heteroscedasticity. Financial Research Journal, 22(2), 149-159. https://doi.org/10.22059/frj.2019.205531.1006186
- Rahnama, H. (2016). A Portfolio Optimization Model Ecole Polytechnique, Montreal (Canada)].
- Rahnama Roodposhti, F., Sadeh, E., Fallahshams, M., Ehteshamrasi, r., & Jalilian, j. (2018). A Portfolio Optimization Model for a Private Equity Investment Company under Data Insufficiency Condition with an Artificial Bee Colony Meta-heuristic Approach. 9(35), 77-104. http://fej.iauctb.ac.ir/article_541829_8be8b16fdfc1d3c4771684f084b2bde2.pdf
- RAHNAMAY ROODPOSHTI, F., NIKOOMARAM, H., TOLOIE ESHLAGHI, A., HOSSEINZADEH LOTFI, F., & BAYAT, M. (2015). PORTFOLIO OPTIMIZATION MODEL TO OPTIMIZE THE PERFORMANCES OF CLASSICAL FORECASTING STABLE PORTFOLIO RISK AND RETURN. FINANCIAL ENGINEERING AND SECURITIES MANAGEMENT (PORTFOLIO MANAGEMENT), 6(22), -. https://www.sid.ir/en/journal/ViewPaper.aspx?ID=433760
- Samarawickrama, A. J. P., & Fernando, T. G. I. (2017, 15-16 Dec. 2017). A recurrent neural network approach in predicting daily stock prices an application to the Sri Lankan stock market. 2017 IEEE International Conference on Industrial and Information Systems (ICIIS),
- Sivam, S., & Rajendran, R. (2020). On the Modelling of Integrated AHP and CoCoSo Approach for Robust Design of Multi-objective Optimization of thinning Parameters for Maximum thinning Rate and Determine Optimum Locations for Directionally-rolled Deep-drawn Cups using Scaling Laws.
- Uryasev, S. (2000, 28-28 March 2000). Conditional value-at-risk: optimization algorithms and applications. Proceedings of the IEEE/IAFE/INFORMS 2000 Conference on Computational Intelligence for Financial Engineering (CIFEr) (Cat. No.00TH8520),
- Yazdani, M., Zarate, P., Kazimieras Zavadskas, E., & Turskis, Z. (2019). A combined compromise solution (CoCoSo) method for multi-criteria decision-making problems. Management Decision, 57(9), 2501-2519. https://doi.org/10.1108/MD-05-2017-0458
- Zeleny, M. (1973). Compromise programming. Multiple criteria decision making.
|