- Alessandretti, L., ElBahrawy, A., Aiello, L.M., Baronchelli, A., Anticipating cryptocurrency prices using machine learning. Complexity 2018.
- Attanasio, G., Cagliero, L., Garza, P., Baralis, E., 2019. Quantitative cryptocurrency trading: exploring the use of machine learning techniques, in: Proceedings of the 5th Workshop on Data Science for Macro-modeling with Financial and Economic Datasets, ACM. 1.
- Auer R., Claessens S. (2018). Regulating cryptocurrencies: Assessing market reactions. BIS Working Paper.
- Ausan A., Demir E., Gozgor G., Lau C. (2019). Effects of the geopolitical risks on Bitcoin returns and volatility. Research in International Business and Finance, V. 47, P. 511-518.
- Barnwal, A., Bharti, H., Ali, A., Singh, V., 2019. Stacking with neural network for cryptocurrency investment. arXiv preprint arXiv:1902.07855
- Benediktsson J, Other Contributors. TA-lib Indicators; 2017.
- Bheemaiah, Kary, Collomb, Alexis. 2018, CRYPTOASSET VALUATION: Identifying the variables of analysis, Working Report v1.0.
- Bo eshagh M., Eftekhari, M., “, "A new memetic approach in numerical optimization: Hierarchical differential evolution algorithm”, 9th symposium of Scince and technology advancements, Mashhad, 2014.
- Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001.
- Burniske, C, Tartar, J., 2018, Cryptoassets, the innovative investor’s guide to Bitcoin and beyond, McGrae Hill Education.
- Cheng, J., Dong, L., Lapata, M., 2016. Long short-term memorynetworks for machine reading. arXiv preprint arXiv:1601.06733 .
- Fan Fang & Carmine Ventre & Michail Basios & Leslie Kanthan & Lingbo Li & David Martinez-Regoband & Fan Wu, 2020. "Cryptocurrency Trading: A Comprehensive Survey," Papers11352, arXiv.org, revised Jan 2022.
- Gabralla, Lubna A., and Ajith Abraham. "Prediction of oil prices using bagging and random subspace." In Proceedings of the Fifth International Conference on Innovations in Bio-Inspired Computing and Applications IBICA 2014, pp. 343-354. Springer, Cham, 2014.
- Hayes A. ,2018. Bitcoin price and its marginal cost of production: Support for a fundamental value. Applied Economics Letters, V. 26, No. 7, P. 554-560.
- Huang, J. ,Huang W., Ni J., Predicting bitcoin returns using high-dimensional technical indicators, The Journal of Finance and Data Science, 2019. Vol 5, Issue 3, 140-155.
- Jianliang, M., Haikun, S., Ling, B., 2009. The application on intrusion detection based on k-means cluster algorithm, in: 2009 International Forum on Information Technology and Applications, IEEE. 150–152.
- Kalchbrenner, N., Grefenstette, E., Blunsom, P., 2014. A convolutional neural network for modelling sentences. arXiv preprint arXiv:1404.2188
- Karam A., Turani M. “Landslide susceptibility zoning using linear regression methods and hierarchical analysis process, case study: Haraz axis from Rodhen to Rineh. Applied Research of Geographical Sciences (Geographical Scienc).
- Keller, Christoph A., and Mat J. Evans. "Application of random forest regression to the calculation of gas-phase chemistry within the GEOS-Chem chemistry model v10." Geoscientific Model Development 12, no. 3 (2019): 1209-1225.
- Kiana, Danial. 2019. Cryptocurrency Investing For Dummies, John Wiley & Sons, Inc.
- Kraaijeveld, Olivier, De Smedt, Johannes. 2020, The predictive power of public Twitter sentiment for forecasting cryptocurrency prices. Journal of International Financial Markets, Institutions & Money, V. 65, P 1-22.
- Kutner, M.H., Nachtsheim, C.J., Neter, J., Li, W., et al., 2005. Applied linear statistical models. volume 5. McGraw-Hill Irwin New
- Kwon, D.H., Kim, J.B., Heo, J.S., Kim, C.M., Han, Y.H., 2019. Time series classification of cryptocurrency price trend based on a recurrent lstm neural network. Journal of Information Processing Systems 15.
- Madan, I., Saluja, S., Zhao, A., 2015. Automated bitcoin trading via machine learning algorithms. URL: http://cs229. stanford.edu/proj2014/Isaac% 20Madan 20.
- Mikolov, T., Kombrink, S., Burget, L., Cˇ ernocky`, J., Khudanpur, S., Extensions of recurrent neural network language model, in: 2011 IEEE international conference on acoustics, speech and signal processing (ICASSP), IEEE. pp. 5528–5531.
- Murphy, J. “ Technical Analysis of the Financial Markets: A Comprehensive Guide to Trading Methods and Applications., New York Institute of Finance, Fishkill, N.Y., 1999.
- Nakamoto, S. (2008) Bitcoin: A Peer-to-Peer Electronic Cash System. https://bitcoin.org/bitcoin.pdf
- Nakano, M., Takahashi, A., Takahashi, S., 2018. Bitcoin technical trading with artificial neural network. Physica A: Statistical Mechanics and its Applications 510, 587–609.
- Persson, S., Slottje, A., Shaw, I., 2018. Hybrid Autoregressive-Recurrent Neural Network Architecture for Algorithmic Trading of Cs230 deep learning thesis. Stanford University.
- Phaladisailoed, T., Numnonda, T., 2018. Machine learning models comparison for bitcoin price prediction, in: 2018 10th International Conference on Information Technology and Electrical Engineering (ICITEE), IEEE
- Price K., RM Storn, JA Lampinen, DE a Practical Approach to Global Optimization, Springer, 2005.
- Rane, P.V., Dhage, S.N., 2019. Systematic erudition of bitcoin price prediction using machine learning techniques, in: 2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS), IEEE. pp. 594–598.
- Rebane, J., Karlsson, I., Denic, S., Papapetrou, P., 2018. Seq2seq rnns and arima models for cryptocurrency prediction: A comparative SIGKDD Fintech 18.
- Sadeghi, A., Daneshvar, A., Madanchi Zaj, M., Combined ensemble multi-class SVM and fuzzy NSGA-II for trend forecasting and trading in Forex markets. Journal of Expert Systems with Applications (2021), Vol 185.
- Sadeghi A., Daneshvar A., Madanchi Zaj M., “Development of an intelligent method based on fuzzy technical indicators for forecasting and trading the Euro-Dollar parity rate”, Financial Engineering and Securities Management Quarterly, No. 45, December 2019.
- Shabankareh, Mohammad Javad, Mohammad Ali Shabankareh, Alireza Nazarian, Alireza Ranjbaran, and Nader Seyyedamiri. "A Stacking-Based Data Mining Solution to Customer Churn Prediction." Journal of Relationship Marketing (2021): 1-24.
- Slepaczuk, R., Zenkova, M., 2018. Robustness of support vector machines in algorithmic trading on cryptocurrency market. Central European Economic Journal 5, 186 – 205.
- Sriram, A., Jun, H., Satheesh, S., Coates, A., 2017. Cold fusion: Training seq2seq models together with language models. arXiv preprint arXiv:1708.06426 .
- Stuerner, P., 2019. Algorithmic Cryptocurrency Trading. Ph.D. thesis. Ulm University.
- Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58(1), 267–288.
- Thakkar, Priyank. "Comparing Multiple Linear Regression and Linear Support Vector Regression for Predicting in Stock Market”, 2015.
- Usai, M. Graziano, Mike E. Goddard, and Ben J. Hayes. "LASSO with cross-validation for genomic selection." Genetics research 91, no. 6 (2009): 427-436.
- Virk, D.S., 2017. Prediction of Bitcoin Price using Data Mining. Master’s thesis. National College of Ireland.
- Vladimirovna, Narimanova Olga, Fariman ogly, Narimanov Nariman, 2021, CRYPTOCURRENCY MARKET: CURRENT STATE AND DEVELOPMENT TRENDS, International Conference on Process Management and Scientific Developments, pp 30-35.
- Vo, A., Yost-Bremm, C., 2018. A high-frequency algorithmic trading strategy for cryptocurrency. Journal of Computer Information Systems , 1–14
|