تعداد نشریات | 50 |
تعداد شمارهها | 2,212 |
تعداد مقالات | 20,305 |
تعداد مشاهده مقاله | 24,216,788 |
تعداد دریافت فایل اصل مقاله | 22,099,212 |
Multiplicity of weak solutions for the Boundary Dirichlet problem of Kirschoff type in Orlicz-Sobolev spaces | ||
Journal of New Researches in Mathematics | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 14 آبان 1402 | ||
نوع مقاله: research paper | ||
شناسه دیجیتال (DOI): 10.30495/jnrm.2023.74085.2432 | ||
نویسندگان | ||
Mahnaz Khosravi Rashti1؛ ءMohsen Alimohammady ![]() | ||
11- Department of Mathematics,Qaemshahr Branch,Islamic Azad University, Qaemshahr , Iran | ||
21- Department of Mathematics,Qaemshahr Branch,Islamic Azad University, Qaemshahr , Iran 2- Department of Mathematics, Faculty of Mathematical Sciences,University of Mazandaran, Babolsar, Iran | ||
چکیده | ||
Abstract: In this article, the existence of at least one and two weak solutions for the following non-linear Dirichlet boundary value problem of the Kirschoff type in Orlicz-Sobolev space, which applies to the energy function of the problem. under the Palais Smale condition, was investigated: {█(M_0 (∫_Ω▒〖[Φ(|∇ w|)+Φ(|w|)]dx) (-div(α(|∇w|) 〗 ∇w)+ α(|w|)w)=λ_0 f_0 (x,w) in Ω,@w=0 on ∂Ω,)┤ where Ω ⊆R^N (N ≥ 3) is a bounded domain with smooth boundary ∂Ω,M_0 ∶ [0,+∞[→ R is a continuous map in which 0 < m_0 ≤ M_0 (z)≤ m_1, for all z ≥ 0, where m0 and m1 are two suitable constants, α∶ (0,∞) → R is a map in which the induced map ϕ∶ R→R is defined by function φ(z)={█(α(|z|)z, for z≠0,@0, for z=0,)┤ is strictly increasing homeomorphism and odd, f_0 ∶ Ω ̅×R → R as usual is an L^1-Carathéodory function and finally λ_0 > 0 is a given parameter. | ||
کلیدواژهها | ||
Variational methods؛ elliptic problems of Kirchhoff type؛ Pelais-Small condition؛ orlicz-Sobolev space؛ critical point theory | ||
آمار تعداد مشاهده مقاله: 15 |