تعداد نشریات | 50 |
تعداد شمارهها | 2,211 |
تعداد مقالات | 20,279 |
تعداد مشاهده مقاله | 24,205,061 |
تعداد دریافت فایل اصل مقاله | 22,094,220 |
Chaotic and Periodic Attractors in a Five-Dimensional Artificial Neural Network Model | ||
Journal of New Researches in Mathematics | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 16 آبان 1402 | ||
نوع مقاله: research paper | ||
شناسه دیجیتال (DOI): 10.30495/jnrm.2023.73326.2419 | ||
نویسنده | ||
Mohammad Hadi Moslehi ![]() ![]() | ||
Department of Mathematics, Payame Noor University (PNU), P.O. Box 19395-3697 Tehran, Iran | ||
چکیده | ||
In this article, the dynamics of a new model of Hopfield neural networks based on 5 neurons is presented and analyzed. In the synaptic coefficients of this model, two parameters are defined which, by changing them, very rich dynamic behaviors, including quasi-periodic attractors (3-torus), chaos, transient chaos, hyperchaos, period-doubling bifurcation route to chaos and coexistence attractors will be observed. This model will include almost most of the dynamic phenomena mentioned. In particular, we observe the period-doubling bifurcation leading to chaos, which has rarely been reported in previous works in five-dimensional autonomous systems, especially the Hopfield system. By changing the parameter a in a very small interval, the evolution process of the system starts from the limit cycle and after passing through a series of periodic attractors, it becomes chaotic. Complex dynamic behaviors of the system are investigated using the Lyapunov spectrum, bifurcation diagram and different sections of the phase space. | ||
کلیدواژهها | ||
chaos؛ hyperchaos؛ transient chaos؛ period-doubling bifurcation؛ Lyapunov spectrum | ||
آمار تعداد مشاهده مقاله: 39 |