- Aleksandrs Bitiņš, Ruta Bogdane, Vladimir Shestakov, Anastasija Stepanova (2022)the ORETICAL AND METHODOLOGICAL APPROACHES TO THE INFORMATION BASE FOR AN AIRLINE’S FLIGHT SAFETY SYSTEM Transactions on Aerospace Research eISSN 2545-2835, VOL. 266, NO. 1/2022, 75-83 DOI: 10.2478/tar-2022-0006
- Balachandran. S and Ella. M. Atkins (2015) Flight Safety Assessment and anagement for Takeoff Using Deterministic Moore Machines JOURNAL OFAEROSPACE INFORMATION SYSTEMS Vol. 12, No. 9, September
- Baars, H. & Kemper, H.-G. (2008).“Management Support with Structured and Unstructured Data: An Integrated Business Intelligence Framework,” Information Systems Management, 25(2). 132-148.
- Borst, C., Grootendorst, F. H., Brouwer, D. I. K., Bedoya, C., Mulder, M., and van Paassen, M. M., “Design and Evaluation of a Safety Augmentation System for Aircraft,” Journal of Aircraft, Vol. 51, No. 1, 2013, pp. 12–22. doi:10.2514/1.C031500
- P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.
- EDAN HABLER, RON BITTON, and ASAF SHABTAI(2021) Evaluating the Security of Aircraft Systems arXiv:2209.04028v1 [cs.CR] 8 Sep 2022
- Eduardo Gallo(2021) Quasi Static Atmospheric Model for Aircraft Trajectory Prediction and Flight Simulation Systems and Control (eess.SY) arXiv:2101.10744v1 [eess.SY] 26 Jan 2021
- A. Gers, J. Schmidhuber, and F. Cummins,(1999) “Learning to forget: Continual prediction with lstm,” 1999.
- Gabriel Jarry, Daniel Delahaye, Eric Féron.(2020) Approach and landing aircraft on-board parameters estimation with LSTM networks. AIDA-AT 2020, 1st conference on Artificial Intelligence and Data Analytics in Air Transportation, Feb 2020, Singapore, Singapore. pp.ISBN: 978-1-7281-5381-0
- Govindarajan, N., De Visser, C., Van Kampen, E., Krishnakumar, K., Barlow, J., and Stepanyan, V., “Optimal Control Framework for Estimating Autopilot Safety Margins,” Journal of Guidance, Control, and Dynamics, Vol. 38, No. 7, 2015, pp. 1197–1207. doi:10.2514/1.G000271
- Guo Y, Sun Y (2020) Flight safety assessment based on an integrated human reliability quantification approach. PLoS ONE 15(4): e0231391. https://doi.org/10.1371/journal. pone.0231391
- He, Z.; Zhou, J.; Dai, H.N.; Wang, H. Gold Price Forecast Based on LSTM-CNN Model. In Proceedings of the 2019 IEEE Intl Conference on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/ CyberSciTech), Fukuoka, Japan, 5–8 August 2019; pp. 1046–1053.
- ICAO, Doc 9859, Safety management manual, 4th ed. Montréal, Quebec, Canada: International Civil Aviation Organization (ICAO), 2022.
- Jing Lu, Longfei Pan, Jingli Deng, Hongjun Chai1, Zhou Ren1 and Yu Shi(2022)Deep learning for Flight Maneuver Recognition: A survey ERA, 31(1): 75–102. DOI: 10.3934/era.2023005
- Johar Samosir, Sarinah Sihombing, Hendro Kuntohadi () Effect of Effectiveness of Use of Electronic Flight Bags on Flight Safety at PT. Garuda Indonesia Annals of R.S.C.B., ISSN:1583-6258, Vol. 25, Issue 3, 2021, Pages. 112 - 122 Received 16 Fe bruary 2021; Accepted 08 March 2021.
- JuanFang, QiangangZheng, ChangpengCai, HaoyinChen, HaiboZhang (2023) Deep reinforcement learning method for turbofan engine acceleration optimization problem within full flight envelope Aerospace Science and Technology [m5G; v1.333] P.1 (1-14)
- Mickael Rey, Daniel Aloise , François Soumis ,Romanic Pieugueu (2021)
- Ng Iris, Sarasvathi Nagalingham (2023) Implementation of Business Intelligence Solution for United Airlines (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 14, No. 1, 2023
- PeiyaoWang, Mingxin Yu1 , Guang Yan1, Jiabin Xia, Jiawei Liu1and Lianqing Zhu(2023) A deep learning-based method for calculating aircraft wing loads Measurement and Control 1–13 _ The Author(s) 2023 Article reuse guidelines: sagepub.com/journals-permissionsDOI: 177/00202940221145971journals.sagepub.com/home/mac
- Singh, G.; Singh, J.; Prabha, C. Data visualization and its key fundamentals: A comprehensive survey. In Proceedings of the 20227th International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 22–24 June 2022.
- Hastie, R. Tibshirani, J. Friedman, and J. Franklin, “The elements of statistical learning: data mining, inference and prediction,” The Mathematical Intelligencer, vol. 27, no. 2, pp. 83–85, 2005
- Tahsin Sejat Saniat, Tahiat Goni, Shaikat M. Galib (2020) LSTM RECURRENT NEURAL NETWORK ASSISTED AIRCRAFT STALL PREDICTION FOR ENHANCED SITUATIONAL AWARENESS arXiv:2012.04876v1 [cs.LG] 9 Dec 2020
- Yi Lin , Linjie Deng, Zhengmao Chen, Xiping Wu, Jianwei Zhang, and Bo Yang(2020) A Real-Time ATC Safety Monitoring nramework Using a Deep Learning Approach IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 21, NO. 11, NOVEMBER 2020
- Zammit-Mangion, D., and Eshelby, M., “Simplified Algorithm to Model Aircraft Acceleration During Takeoff,” Journal of Aircraft, Vol. 45, No. 4, 2008, pp. 1090–1097. doi:10.2514/1.22966
- Zhu, D.; Wang, Y.; Zhang, F. Energy Price Prediction Integrated with Singular Spectrum Analysis and Long Short-Term Memory Network against the Background of Carbon Neutrality. Energies 2022, 15, 8128. [CrossRef]
|