تعداد نشریات | 50 |
تعداد شمارهها | 2,105 |
تعداد مقالات | 19,507 |
تعداد مشاهده مقاله | 23,105,626 |
تعداد دریافت فایل اصل مقاله | 21,359,967 |
On computing the general Narumi-Katayama index of some graphs | ||
International Journal of Industrial Mathematics | ||
مقاله 5، دوره 7، شماره 1، فروردین 2015، صفحه 45-50 اصل مقاله (382.33 K) | ||
نوع مقاله: Research Paper | ||
نویسنده | ||
S. Z. Aghamohammadi ![]() | ||
Department of Mathematics, Eslamshahr Branch, Islamic Azad University, Tehran, Iran. | ||
چکیده | ||
The Narumi-Katayama index was the first topological index defined by the product of some graph theoretical quantities. Let $G$ be a simple graph with vertex set $V = \{v_1,\ldots, v_n \}$ and $d(v)$ be the degree of vertex $v$ in the graph $G$. The Narumi-Katayama index is defined as $NK(G) = \prod_{v\in V}d(v)$. In this paper, the Narumi-Katayama index is generalized using a $n$-vector $x$ and it is denoted by $GNK(G, x)$ for a graph $G$. Then, we obtain some bounds for $GNK$ index of a graph $G$ by terms of clique number and independent number of $G$. Also we compute the $GNK$ index of splice and link of two graphs. Finally, we use from our results to compute the $GNK$ index of a class of dendrimers. | ||
کلیدواژهها | ||
Narumi-Katayama index؛ Molecular graph؛ Clique number؛ Independent number؛ Dendrimers. | ||
آمار تعداد مشاهده مقاله: 1,309 تعداد دریافت فایل اصل مقاله: 1,481 |